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Abstract

In this work, we deal with the problem of analyzing data acquired from high-resolution
satellite imagery to provide accurate insights, trends and predictive signals for humanitar-
ian purposes. Motivated by the fact that Coronavirus Disease (COVID-19) pandemic has
caused worldwide turmoil in a short period of time since December 2019, we estimate the
negative impact of COVID-19 lockdown in the capital of Spain, Madrid, using commercial
satellite imagery courtesy of Maxar c©. We observed that satellite imagery is a rich source
of information, thus we design a product to deal with the aforementioned problem using
advanced computer vision and machine learning algorithms to generate robust, predictive
and consumable information for policy makers.

Automated analytics involving detection, tracking and counting vehicles from satellite
imagery are still relevant and open problems in computer vision. During this BDExp, we
focus on the development of a car-counting solution to monitor the presence of visible cars
within these high-resolution images. In this way, we process different “regions of interest”
(i.e., hospital, shopping centre, industry, to name a few) before and during the COVID-19
lockdown. We hypothesize that COVID-19 outbreak would have negative impacts on the
global economy as a consequence of the urban mobility restrictions. For this reason, it is
essential to estimate the reduction of vehicles during the confinement.

In the experiments we also measure the performance of the our proposal, and compute
car-counting statistics to quantify the dramatic drop in the number of vehicles during the
lockdown. As a result, we corroborate these statistics using additional indicators such as
telco, traffic and economic data respectively. We reach the conclusion that these insights
correlate with official statistics on activity, thus car-counting statistics can complement
traditional measures of economic activity in helping policy makers tailor their responses
to flatten the recession curve.
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Chapter 1
Introduction

The ambition of EIT Digital is to educate a new generation of leaders in future tech-
nologies, as an answer to the evolving needs of the European economy. The EIT Digital
Doctoral School (https://doctoralschool.eitdigital.eu/) innovates with a new kind
of doctoral programme based on offering a deep expertise in key digital areas together
with a strong background in Innovation and Entrepreneurship (I&E). In this document,
we present the last phase of this doctoral education also denoted as Business Development
Experience (BDExp). It involves an internship period of six months at a large company
to assure that PhD candidates attain I&E skills.

During my doctoral research, we deal with the problem of accurately estimating the
pose of human faces in images. This involves the location in the image of a set of facial
fiducial points or “landmarks” that represents the combination of the rigid and non-rigid
components of face pose [20, 1, 21, 14, 19, 22]. Analogously, during the BDExp, we also
consider the problem of locating visible vehicles by processing aerial images using similar
computer vision algorithms.

In this context, Telefónica provided me with the opportunity to work with one of the
largest telephone operators and mobile network providers in the world. They believe big
data and artificial intelligence can be of great use to society’s development (something
they call “Big Data for Social Good” within their big data business, LUCA). Therefore,
they work in various social, humanitarian and environmental areas to give the world back
the value of data and contribute to the UN Sustainable Development Goals for 2030. For
more information, visit https://luca-d3.com/data-for-good/data-social

1.1 Motivation

There is a growing interest in the analysis of satellite imagery for multiple domains:

1.1.1 Economic activity

When governments, international institutions or NGOs want to monitor population
displacements (see Fig. 1.1) or identify the economic growth in cities, they can also act
fast and efficiently thanks to satellite imagery. In a normal year, millions of Muslims flock
to Mecca. However with COVID-19 only a few thousand have been allowed to make the
journey this year, under strict rules.

The expansion of COVID-19 is causing a healthcare crisis with an impact on economic
sectors. The authorities in Spain are adopting all necessary measures to contain the spread
of the virus and mitigate its impact on the national economy. Economic activities impact
social behaviours, which leave signatures in satellite images that can be automatically
detected and classified.
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Chapter 1. Introduction

(a) Pre-disaster (14/02/2020) (b) Post-disaster (03/03/2020)

Figure 1.1: Satellite images courtesy of Maxar c© illustrate a smaller crowd surrounding the
Kaaba at the Grand Mosque in the holy city of Mecca, Saudi Arabia, during COVID-19.

Additionally, recent literature estimates the poverty in different regions, which is the
first “Sustainable Development Goal” by using nigh-time light satellite images. However,
non-commercial sensors from public satellites, e.g., Day/Night Band sensor (DNB) from
Suomi National Polar-orbiting Partnership (SNPP) Visible Infrared Imaging Radiometer
Suite (VIIRS), only provide images at a resolution of about 750m.

As a result, commercial night-time images are required to infer economic activities,
e.g., quantifying the lights emissions of each city [8]. The Jilin-1 satellite constellation
are Chinese remote sensing satellite sensors, which are owned by Chang Guang Satellite
Technology Company c©. Jilin-1 satellites have the capability to capture high definition
images (1m), video sequences and hyperspectral imagery for various mapping applications
including environmental monitoring, forest management, energy, mining, land planning
and more (see Fig. 1.2).

(a) Wuhan

(b) New York

Figure 1.2: Comparison of night-time satellite imagery pre/post COVID-19 lockdown in
two different cities. Samples provided by Veritas Imagery Services c©.
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1.1. Motivation

1.1.2 Natural disasters

This is likely the line of action that most directly contributes to saving human lives.
We can help in several ways by locating vulnerable population centres and identifying
pre and post disaster patterns such as floods, storms, earthquakes, eruptions, wildfires,
shoreline erosion, oil spills and burning gas fields prevention and damage assessment [5]
(see Fig. 1.3). When countries are affected by major floods events (see Fig. 1.4), efficient
response is almost unthinkable without the analysis of satellite imagery to gather detailed
information about water extent and affected population.

(a) Pre-disaster (09/06/2020) (b) Post-disaster (05/08/2020)

Figure 1.3: Satellite images courtesy of Maxar c© show the scale of the damage caused by
Beirut explosion of 4th August 2020, with buildings miles from the port lying in ruin.

(a) Pre-disaster (01/04/2017) (b) Post-disaster (04/04/2017)

Figure 1.4: The Mocoa landslide was a natural disaster that took place in 2017. During
the pre-dawn hours of 1st April, locally heavy rain triggered flash flooding and landslides
in the city of Mocoa.

1.1.3 World environment

When governments or financial institutions want to assess the evolution of dam/bridge
construction work in remote areas (urban change analysis), they can do it using satellite
imagery, without having to send somebody to the field too often (see Fig. 1.5). More-
over, it is crucial to evaluate the achievement of the “Sustainable Development Goals” in
countries with low financial resources, e.g., quantifying the lack of water resources, the
reduction of forests, mapping to establish ownership of land and buildings, monitoring the
size and health of their crops (agriculture), and growing threats due to climate change.
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Chapter 1. Introduction

(a) Pre-disaster (28/04/2017) (b) Post-disaster (22/02/2020)

Figure 1.5: Satellite images courtesy of Maxar c© show the hospital being built to handle
COVID-19 pandemic at the Chinese city of Wuhan.

At the same time, instruments onboard environmental satellites are showing the im-
pact of the COVID-19 on the environment. As factories halt operations and businesses
close, air quality is improving in hard-hit regions. Recent studies [15] prove that the “Tro-
pospheric Monitoring Instrument” sensor onboard Sentinel-5P have detected reductions
in nitrogen dioxide, an atmospheric pollutant created by fuel combustion. Nitrogen diox-
ide concentrations fell sharply from March 2019 to March 2020 near major cities including
New York, Paris, Madrid and Milan, according to the European Space Agency.

1.1.4 Artificial Intelligence in Telefónica

Telefónica is also a member of the Spanish Observatory for Big Data, Artificial Intelli-
gence and Data Analytics (BIDA). This group consists of around 30 large enterprises that
study the possibility of a B2G (Business to Government) data sharing initiative to provide
future insights on climate change to policy makers (https://aeca.es/observatorio_
bida/). BIDA believes that this would be the first time business data would be shared
for the common good on such a large scale. Applying Artificial Intelligence (AI) to this
unique combination of public and privately held data has the potential to uncover so-far
unknown insights about the relation between economic activities and potential measures
to reduce climate change.

However, when the COVID-19 pandemic erupted, companies had to change. It has
become a key concern with a major impact on businesses across sectors. Consequently,
all decision-makers of the BIDA initiative (i.e., Telefónica c©, BBVA c©, Mapfre c©, Red
Eléctrica de España c©, Instituto Nacional de Estad́ıstica, Banco de España, Instituto de
Estudios Fiscales) decided to share statistical data correctly anonymized in order to infer
economic indicators for a post COVID-19 economic recovery.

It is also worthwhile to notice an increasing role of other “computer vision” products in
Telefónica (https://www.telefonica.com/en/web/press-office/-/telefonica-designs-the-most-advanced-system-on-the-market-to-control-the-capacity-on-the-beaches).
Recently, they develop the most advanced system on the market to monitor the num-
ber of people and occupancy on the beaches. In the context of COVID-19 restrictions,
the protocol for the opening of beaches recommends the authorities (town halls, coasts,
autonomous communities) to determine the capacity of bathers and set the maximum
number of people who may come in groups to the facilities. Through a video surveillance
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1.2. Objectives

system, multiple cameras detect which areas are being occupied and which are free and
calculate the percentage of occupation in real time. This capacity and occupancy control
system has more than 99% reliability thanks to the cameras equipped with powerful soft-
ware using deep learning techniques through a neural network capable of discriminating
against other elements and discarding them from the counting metrics as it only counts
people (see Fig. 1.6).

(a) Free area (b) Occupied area

Figure 1.6: With this Telefónica c© solution, town halls can control, simply and effectively,
the capacity of its beaches through cameras that capture frames from the area.

1.2 Objectives

The European Commission has issued a coordinated economic response to the COVID-
19 outbreak. This includes an analysis of the impact that COVID-19 pandemic has in the
private equity sector and proposed measures to mitigate harm. Telefónica observed that
satellite imagery is a rich source of information, yet it is less investigated and sustainable
results can be converted into a business.

Right now, organisations providing services based on remote sensing data do not know
how to automatically extract all the information implicitly included. My role will be to
design the guidelines to standardize a software to deal with the aforementioned problem,
and how to carry out an intensive analysis of the satellite information that allows other
institutions or authorities to evaluate the economic impact of COVID-19 policies. In this
way, statisticians and managers would improve their tools and skills for working with
such satellite data, by integrating this AI software in their standard statistical business
processes.

Nowadays, there is an increasing number of organizations providing services based on
satellite imagery (see Section 3.2), and the vast majority have reportedly used techniques
like car-counting, tracking oil inventories or watching corn fields to make profitable fore-
casts of equity and commodity markets, to name a few. We also believe that car-counting
estimated through AI techniques would provide useful insights to enable evidence-based
policy making for solving societal problems. Recent studies reveal up to a 90% increase
when comparing cars traffic between fall of 2018 and 2019 in several hospitals from Wuhan
(see Fig. 1.7). We hypothesize that the amount of vehicles, which decreases drastically
during the COVID-19 lockdown, could be correlated with the economic activity. Thus,
we further investigate on how to accurately detect these vehicles using computer vision
techniques.
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Chapter 1. Introduction

Figure 1.7: Satellite images courtesy of RSMetrics c© suggest that COVID-19 may have
been present and spreading through China before the outbreak was first reported to the
world. A dramatic increase in hospital traffic reveals that an infection was growing in the
community and people have to see a doctor.

Finally, we would like to confirm the results obtained monitoring vehicles from satellite
imagery comparing them with additional information such as: telco, traffic and economic
data. Further analysis of each decision is also interesting to learn what “things” can be
useful to maintain during the “new normal” status such as teleworking, etc.
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Chapter 2
Remote sensing data

In the GIT context (Geospatial Information Technology), when people are referring to
remote sensing they are generally talking about Earth data captured by devices mounted
on satellites, airplanes or drones. But strictly speaking, human eyes or a dolphin’s sonar
are also types of remote sensing systems. In this chapter, we categorize satellite remote
sensing systems according to three different criteria:

1. The spatial resolution specifies the pixel size of satellite images covering the Earth
surface (low spatial resolution: 30m - 1000m; high spatial resolution: 0.3m - 4m).
Sensors with resolution lower than 0.3m are restricted to military services, so public
images with low resolution are obtained using a drone, plane or globe (see Fig. 2.1).

Figure 2.1: Spatial Resolution.

In the case of an image that has 10m spatial resolution, features that are smaller
than 100m2 will not be correctly detected. Satellite imagery has a maximum spatial
resolution of about 30 centimetres, thus it is not possible to detect individual persons
using either commercial or free satellites.

2. The temporal resolution specifies the revisiting frequency of a satellite sensor for a
specific location (low temporal resolution: > 16 days; high temporal resolution: <
1 day - 3 days). Geostationary satellites always fly over the same area and can take
several shots of the same location per day. On the contrary, most other satellites

7



Chapter 2. Remote sensing data

(called “sun-synchronous”) are in constant movement, an can acquire images from
a specific zone only every few days.

3. Satellite sensors can provide complex types of information, including information
that cannot be directly perceived by human eyes. In the first instance, a sensor’s
spectral resolution specifies the number of spectral bands in which the sensor can
collect reflected radiance (see Fig. 2.2). But the number of bands is not the only
important aspect of spectral resolution. The wavelength of bands in the electromag-
netic spectrum is also important (low spectral resolution: 3 bands; medium spectral
resolution: 3 - 15 bands; high spectral resolution: 220 bands).

Figure 2.2: Spectral Resolution.

Unfortunately, because of technical constraints, satellite remote sensing systems can
only offer the following relationship between spatial and spectral resolution: a high spatial
resolution is associated with a low spectral resolution and vice versa.

Most satellites are built and maintained by private enterprises (see Table A.1). Dig-
italGlobe c© and MDA Holdings c© merged to become Maxar c© on 2017, the most important
commercial vendor of space imagery and geospatial content (https://www.digitalglobe.
com/products/satellite-imagery). It is also worthwhile to mention other big and small
companies, e.g., Airbus c© (https://www.airbus.com/space.html), Planet c© (https://
www.planet.com/), Earth-i c© (https://earthi.space/), CG-Satellite c© (https://www.
cgsatellite.com/), Satellogic c© (https://satellogic.com/), to name a few.

Satellite imaging of the Earth surface is of sufficient public utility that many countries
also maintain remote sensing programs. USA has led the way in making this data public
for scientific use, e.g., National Aeronautics and Space Administration (NASA), National
Oceanic and Atmospheric Administration (NOAA), European Space Agency (ESA), etc.

2.1 Satellite viewers

Ordering high-resolution satellite imagery can be a real hassle. It requires finding a
reputable satellite imagery distributor, knowledge on what type of image data is needed for
the job, running a search through several image search and discover services, obtaining a
price quote, negotiating terms, sending a purchase order, waiting for the order to process,
and finally downloading very large data files.
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2.1. Satellite viewers

There are multiple online subscription services available, but we only mention the
most relevant:

• SecureWatch delivers the +100 petabyte imagery library from Maxar c©, the first
satellite imagery provider, which includes all commercial daily collections from the
WorldView-2, WorldView-3, WorldView-4 and GeoEye-1 series, for online viewing
or on-demand archive retrieval (https://securewatch.digitalglobe.com/). For
example, it has been utilized by Google Earth Pro c©.

Figure 2.3: SecureWatch trial accounts allow us to download up to 60GB data.

We obtain a trial license for two months from 14th April to 13rd June (see Fig. 2.3).
Our account provides full access to the SecureWatch catalogue, including FirstLook,
Metro and Vivid modes (see Fig. 2.4). FirstLook is everything customers need for
emergency management providing access to pre/post event imagery. Metro supplies
up-to-date high-resolution imagery (0.3m) of more than 6000 world capitals. Images
are mosaicked together to provide a consistent view of the urban landscape. Vivid
also provides a high-resolution mosaic (0.5m) of a whole country.

We have downloaded multiple high-resolution images from their catalogue to create
an extensive data set of Madrid (see Section 2.3). However, it is worth mentioning
two main disadvantages of the SecureWatch platform: 1) the WorldView series, Geo-
Eye, QuickBird, KompSat and IKONOS sensors always capture images at 11:00am
approximately. Thus, it is impossible to acquire images from night-time to analyze
the illumination [8], or earlier at 08:30am to deal with traffic jams. 2) the amount of
images at most cities is insufficient. In the most important districts, such as Madrid
or Barcelona, we approximately find one image per month, but, in other cities, there
are only one or two images per year. Additionally, we have to discard certain images
due to some appearance problems, e.g., noise, presence of clouds, etc.

• OneAtlas is a unique collaborative environment to easily access premium imagery
from Pleiades, SPOT, and open source data such as Sentinel-2. We perform large
scale image processing, since we benefit from Airbus c© assets (https://oneatlas.
airbus.com/).
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Chapter 2. Remote sensing data

(a) Metro (b) Vivid (c) FirstLook (d) SecureWatch

Figure 2.4: Metadata from samples acquired in Metro, Vivid, FirstLook and SecureWatch
modes around “El Cañaveral”.

• Planet Explorer offers its own API integrations with direct integration to ArcGIS
and the open source geospatial platform, QGIS. We also consider Planet c©’s biggest
advantage as the frequency of image collections with its signature huge constellation
of PlanetScope satellites (https://www.planet.com/explorer/).

• ESRI (Environmental Systems Research Institute) is an international supplier of
geographic information system (GIS) software. ESRI uses the name ArcGIS to refer
to its suite of GIS software products (http://maps.arcgis.com/apps/MapSeries/
index.html?appid=9766dba97c954fcaa175da83b72ccf06). It provides access to
Landsat (https://livingatlas2.arcgis.com/landsatexplorer) or Sentinel data
(https://sentinel2explorer.esri.com).

• NASA’s GIBS explores the past and present of our planet through NASA’s Global
Imagery Browse Services. GIBS provides quick access to over 900 satellite imagery
products available within 3-5 hours of being observed. View GIBS in action by us-
ing Worldview (https://worldview.earthdata.nasa.gov/) and Earthdata Search
(https://search.earthdata.nasa.gov/). Additionally, NASA-ARSET provides
online seminars to train people to visualize, interpret and apply remote sensing data
(https://arset.gsfc.nasa.gov/all/upcoming-arset-trainings).

Download free satellite data from Amazon Web Services (AWS) (https://registry.
opendata.aws/tag/satellite-imagery/). Example using Landsat-8 data:

aws s3 cp --recursive

s3://landsat-pds/c1/L8/201/032/LC08_L1TP_201032_20190904_20190917_01_T1/ .

However, anonymous access to most satellites stored in AWS is not allowed (CBERS-
4, Sentinel-2, Sentinel-1 or Terra/MODIS). The request authentication enables Amazon
S3 to identify and charge the requester for their use of the bucket.
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2.2. Public labelled data sets

Additionally, Sentinel satellite data is also available via Copernicus (https://scihub.
copernicus.eu/) and 5 Data and Information Access Services (DIAS) through the fol-
lowing platforms: CreoDIAS (https://creodias.eu/), Mundi Web Services (https://
mundiwebservices.com/), ONDA DIAS (https://www.onda-dias.eu/cms/), WEkEO
(https://www.wekeo.eu/) and Sobloo (https://sobloo.eu/).

We have downloaded via Copernicus multiple images from the same location at dif-
ferent spatial resolutions to visually compare their quality (see Fig. 2.5).

(a) Sentinel-2 (b) 60m (c) 20m (d) 10m

Figure 2.5: TCI (True Colour Image) images acquired from the Sentinel-2 satellite using
different spatial resolutions. Best viewed in color and zoomed in.

As a result, we reach the conclusion that public satellite images of 10m resolution does
not contain enough information to accurately detect vehicles in the scene (see Fig. 2.6).

(a) Before COVID-19 lockdown (14/01/2020) (b) During COVID-19 lockdown (04/04/2020)

Figure 2.6: Differences between two Sentinel-2 satellite images of the same location before
and during COVID-19 pandemic (shopping centre “Plaza Norte 2”).

Moreover, the satellite imagery downloaded is not labelled, e.g., annotated with the
location of each visible vehicle. Consequently, other annotated data sets are required to
train sophisticated computer vision models that learn how to extract relevant information
from these images.

2.2 Public labelled data sets

• DOTA [23] (https://captain-whu.github.io/DOTA/) is a large-scale data set for
object detection in aerial images. The fully annotated DOTA images contains
188282 instances, each of which is labelled by an arbitrary (8 dof) quadrilateral (see
Fig. 2.7).
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Chapter 2. Remote sensing data

• COWC [16] (https://gdo152.llnl.gov/cowc/). The Cars Overhead With Con-
text data set is a large set with annotated cars from overhead (0.15m). It provides
32716 annotated cars that are useful for training models such as deep neural net-
works to learn how to detect and count cars. COWC-M extends the original data
set by adding labels for the classes of cars “sedan”, “pickup”, “other” or “unknown”.

• CARPK [7] (https://lafi.github.io/LPN/). The Car Parking Lot data set con-
tains nearly 90000 cars from 4 different parking lots collected by means of a drone at
approximate 40 meters height. The image set is annotated by one bounding box per
car. All labelled bounding boxes have been well recorded with the top-left points
and the bottom-right points required to detect and count cars.

• VEDAI [17] (https://downloads.greyc.fr/vedai/). VEDAI is a data set for
Vehicle Detection in Aerial Imagery, provided as a tool to detect and count cars
in unconstrained environments (0.125m). The vehicles contained in the database, in
addition of being small, exhibit different variabilities such as multiple orientations,
lighting/shadowing changes or occlusions.

• DLR-MVDA [12] (https://www.dlr.de/eoc/en/desktopdefault.aspx/tabid-12760).
The DLR Munich Vehicle data set was collected over the Munich city, Germany to
detect vehicles. The images were captured from an airplane by a Canon Eos 1Ds
Mark III camera. The optical image is taken at a height of 1000m above ground,
and the ground sampling distance is approximately 0.13m.

• EAGLE [2] (https://www.dlr.de/eoc/en/desktopdefault.aspx/tabid-12760)
is a large scale data base for multi-class vehicle detection. It consists of 215986
instances manually annotated with oriented bounding boxes by airborne imagery
experts.

Figure 2.7: Multi-class object detection.

• fMoW [3] (https://www.iarpa.gov/challenges/fmow.html) consists of over one
million images from over 200 countries and includes images and metadata released
in the benchmark. For each image, we provide at least one bounding box annotation
containing one of 63 categories. In this second classification problem, we learn to
recognize objects such as “airport”, “hospital”, “military facility”, “prison”, “zoo”,
“stadium”, etc.
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2.3. High-resolution data set over Madrid

• xView [9] (https://xviewdataset.org) holds images from complex scenes around
the world, annotated using bounding boxes with 60 classes at 0.3m spatial resolution.
In such a classification problem, we learn to recognize objects such as “aircraft”,
“barge”, “building”, “bus”, “tower”, “ferry”, etc.

• xView2 [5] (https://xview2.org) provides high-resolution satellite imagery for
building damage assessment. It uses imagery from the Maxar c©’s Open Data
Program. It has annotated polygons and damage scores for each building, giving
particular attention to on-the-ground changes between pre-disaster and post-disaster
imagery (see Fig. 2.8).

(a) Pre-disaster (b) Post-disaster (c) Annotated by damage scale

Figure 2.8: Building damage assessment.

• iSAID [25] (https://captain-whu.github.io/iSAID/) is a large-scale data base
for instance segmentation in aerial images. It contains 2806 high-resolution im-
ages densely annotated with 655451 object instances and 15 categories.

• SpaceNet [4] (https://spacenetchallenge.github.io/) also focuses on the use
of off-nadir imagery for building footprint extraction segmentation. The data set
includes building labels for 6 different areas of interest (Rio, Vegas, Paris, Shanghai,
Khartoum and Atlanta).

2.3 High-resolution data set over Madrid

In this section we have collected multiple images over Madrid using the SecureWatch
platform. High-resolution imagery, as provided by commercial satellites that daily collect
images with a ground sample distance of 0.3m around the globe, can be a valuable asset
to estimate the impacts of COVID-19 in society. We first consider the option to download
mosaicked images over Madrid using the SecureWatch’s Metro catalogue (see Section 2.1).
However, it only provides 1 mosaic per year covering up to 2432 km2 which represents a
30% of the total area that the surface of the whole autonomous community occupies (see
Fig. 2.9).

Alternatively, we use the standard SecureWatch catalogue to download/stream images
acquired from 22 different hot spots in Madrid. They approximately delimit 163.5 km2 of
land area, which represents a 2% of the whole autonomous community. For each region of
interest, we obtain all samples available in the SecureWatch platform (via WorldView-4
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Chapter 2. Remote sensing data

Figure 2.9: Sample mosaic obtained using the Metro catalogue from SecureWatch. With
committed annual refresh, the Metro image layer provides a predictable and reliable,
current view of the ever-changing urban landscape, however it is not useful to evaluate
the economic impact of COVID-19.

satellite), which on average represents 1 image per month. As a result, we have collected
153 images saved in a private repository in AWS (bobetocalo-maxar).

Table 2.1 denotes the area and acquisition dates related to each region of interest.
The selection of these hot spots in Madrid would allow us to handle different action lines
(see Section 1.1). For instance, “Vicente Calderón” to assess the evolution of building
constructions; “Navacerrada” to analyze the effect of climate change; “Morata de Tajuña”
to evaluate agriculture activity; “Barajas Airport”/“EMT Carabanchel” to measure eco-
nomic activity detecting transports such as planes/buses, etc.

In fact, as our goal is to evaluate the economic impact of COVID-19 lockdown through
the presence of vehicles, we also define different subcategories such as shopping centres
(e.g., “Parquesur”); hospitals (e.g., “Doce de Octubre”); industrial areas (e.g., “Poĺıgono
Cobo Calleja”); traffic congestion (e.g., “Manoteras”); parks (e.g., “Retiro”); universities
(e.g., “Ciudad universitaria”), etc.
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Place Area (km2) Date
Barajas Airport 30.52 (24/10/19) (19/02/20) (20/02/20) (04/03/20) (26/03/20)

Vicente Calderón 7.64

(19/12/18) (20/01/19) (25/03/19) (25/05/19) (21/07/19)
(28/08/19) (27/09/19) (05/10/19) (16/10/19) (24/10/19)
(06/12/19) (13/01/20) (20/02/20) (29/03/20) (24/05/20)

(06/06/20)

El cañaveral 27.50
(11/11/15) (27/04/16) (09/03/17) (22/02/18) (23/09/18)

(27/02/19) (24/10/19) (19/02/20)

Ciudad universitaria 7.63
(05/10/19) (24/10/19) (06/12/19) (13/01/20) (20/02/20)

(29/03/20) (24/05/20) (06/06/20)
Poĺıgono Cobo Calleja 30.63 (27/02/19) (24/10/19) (20/02/20) (29/03/20)
Mercamadrid 7.64 (27/02/19) (24/10/19) (04/03/20) (29/03/20) (24/05/20)
EMT Carabanchel 0.47 (27/02/19) (24/10/19) (20/02/20) (29/03/20) (24/05/20)
Doce de Octubre 1.91 (24/10/19) (20/02/20) (29/03/20) (24/05/20)
Fuenlabrada 1.91 (02/10/18) (27/02/19) (24/10/19) (04/04/20)

Alcalá de Henares 1.91
(27/02/19) (01/06/19) (16/09/19) (28/09/19) (24/10/19)

(13/01/20) (19/02/20) (04/03/20)

Hospital San Carlos 1.90

(01/01/19) (07/01/19) (14/01/19) (20/01/19) (27/02/19)
(25/05/19) (21/07/19) (28/08/19) (27/09/19) (05/10/19)
(24/10/19) (06/12/19) (13/01/20) (20/02/20) (29/03/20)

(24/05/20) (06/06/20)

Manoteras 7.63
(05/10/19) (06/12/19) (13/01/20) (20/02/20) (29/03/20)

(24/05/20) (06/06/20)

Morata de Tajuña 7.66
(07/11/15) (27/04/16) (23/09/18) (02/10/18) (24/10/19)

(24/05/20)
Navacerrada 7.59 (28/03/19) (02/10/19)

Parque de Atracciones 1.91
(13/01/19) (25/05/19) (09/07/19) (21/07/19) (28/08/19)
(05/10/19) (24/10/19) (06/12/19) (20/02/20) (29/03/20)

(24/05/20) (06/06/20)
Retiro 7.64 (06/12/19) (13/01/20) (20/02/20) (29/03/20) (24/05/20)
Puerta del Sol 1.91 (06/12/19) (13/01/20) (20/02/20) (29/03/20) (24/05/20)
Distrito Telefónica 1.90 (28/08/19) (24/10/19) (04/03/20) (24/05/20)

Vallecas 1.91
(01/01/19) (27/02/19) (25/05/19) (09/07/19) (21/07/19)
(28/08/19) (27/09/19) (05/10/19) (24/10/19) (06/12/19)
(13/01/20) (20/02/20) (29/03/20) (24/05/20) (06/06/20)

La Gavia 1.91 (27/02/19) (24/10/19) (19/02/20) (04/03/20) (29/03/20)
Las Rozas 1.90 (23/09/18) (27/02/19) (02/10/19) (04/04/20)
Parquesur 1.91 (24/10/19) (28/02/20) (29/03/20) (24/05/20)

Table 2.1: Data set collection with 22 different regions of interest over Madrid.
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(a) Before COVID-19 lockdown (27/02/2019)

(b) During COVID-19 lockdown (04/04/2020)

Figure 2.10: Parking located at “The Style Outlets” shopping centre, the first outlet
centre open in Spain.

(a) Before COVID-19 lockdown (20/02/2020)

(b) During COVID-19 lockdown (29/03/2020)

Figure 2.11: The “Poĺıgono Cobo Calleja” is a huge economic area overwhelmingly dedi-
cated to the wholesale distribution of Chinese imports.
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(a) Before COVID-19 lockdown (20/02/2020)

(b) During COVID-19 lockdown (26/03/2020)

Figure 2.12: “Barajas” is one of the world’s largest airport terminals in terms of area. The
image includes the main building, T4 and a satellite building, T4S which is approximately
2.5km apart.

(a) Before COVID-19 lockdown (20/02/2020)

(b) During COVID-19 lockdown (29/03/2020)

Figure 2.13: The “12 de Octubre” is a public University Hospital for the southern zone
of Madrid.
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(a) Before COVID-19 lockdown (04/03/2020)

(b) During COVID-19 lockdown (24/05/2020)

Figure 2.14: The “Distrito Telefónica” is the headquarters of the Spanish telecom company
Telefónica in Las Tablas, Madrid.

(a) 19/12/2018 (b) 25/03/2019

(c) 25/05/2019 (d) 20/02/2020

Figure 2.15: The “Vicente Calderón” stadium was the home stadium of Atlético Madrid
since its completion in 1966 to 2017, with a seating capacity of 54907 and located on the
banks of the Manzanares, in the Arganzuela district of Madrid, Spain.
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Chapter 3
Monitoring vehicles

Our main objective is the location of cars within each satellite image. In this way,
by counting the number of cars in a certain region pre-post coronavirus confinement, we
would measure its relationship with the economic growth.

First, it is crucial to annotate the aforementioned images with the position of each
vehicle of interest in the scene. We use publicly available software as LabelImg (https:
//github.com/tzutalin/labelImg), which stores as XML files the coordinates manually
annotated. It is worth mentioning that labelling such an image with up to 5000 cars would
take 5 days approximately (see Fig. 3.1). Consequently, as we do not have enough time
to annotate all images in our data set (see Table 2.1), we have just selected 10 images in
order to evaluate the performance of our vehicle detector.

Figure 3.1: LabelImg is a graphical image annotation tool. It is written in Python and
uses Qt for its graphical interface.

3.1 Business plan

The detection of vehicles in satellite images is important for various applications e.g.,
traffic management, parking lots utilization, urban planning, etc. Collecting traffic and
parking data from airborne platforms such as drones, airplanes, satellites, etc. gives fast
coverage over a larger area. Getting the same coverage by terrestrial sensors would need
the deployment of more sensors, more manual work, thus higher costs. In fact, investors
who can afford to hire satellites to extract information are finding a significant edge in
the stock market.
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For example, a real application to the localization of buildings is to know exactly where
to deliver assistance (high resolution population maps https://ai.facebook.com/blog/
mapping-the-world-to-help-aid-workers-with-weakly-semi-supervised-learning).
Similarly, it is in full alignment with relevant EU initiatives (Green Deal, Data Strategy,
B2G data sharing report). The European Commission requested the sharing of satellite
data related to the COVID-19 for research purposes (https://www.euspaceimaging.
com/eu-commission-asks-eo-community-for-help-with-covid-19/).

However, to unleash the power in satellite images, we need automated AI-based com-
puter algorithms to extract these kinds of information from them. The data space will be
fed with a combination of privately-held and publicly available data. As our main con-
tribution, we present a framework that recognizes specific elements in strategic locations
to compute such economic insights. The main difference to other works is that we do not
regress indicators directly from the images, but from information obtained from them,
such as the number of vehicles, trucks, buildings, and so on. This strategy allows us to
create indicators that are informative, understandable, and supportive in decision-making.
Intellectual property developing the product is fully owned by Telefónica.

3.2 Market study

Satellite data value continues moving downstream towards big data analytics, as newer
data sets and applications come online. Industry incumbents with operational capacities,
e.g., Maxar c©, Airbus c©, Planet c©, Earth-i c©, and so on, continue to partner and evolve
their businesses towards offering data applications as part of their services. For example:
Geospatial Big Data platform (GBDX) enables extraction of meaningful insights such as
objects or materials, with access to Maxar c© high-resolution satellite imagery (https://
www.maxar.com/products/gbdx); Earth-i c© launched AI-enabled SPECTRUM geospatial
intelligence platform (https://earthi.space/spectrum/).

Alternatively, multiple venture capital firms invests in high-tech companies for the
sole purpose of extracting data from satellite imagery to process custom imagery data
feeds, and create vertical apps, trends, alerts and predictive signals. There are a few that
we think are positioned for success: RSMetrics c© (https://rsmetrics.com/) is the vet-
eran providing fundamental insights, trends and predictive signals for businesses and in-
vestors in metals, industrials, retail and commercial real estate; Orbital insight c© (https:
//orbitalinsight.com/) has attracted investment on agriculture, retail car counting,
and oil inventory; Descartes Labs c© (https://www.descarteslabs.com/) became known
for correctly predicting a drop in domestic corn production based on its analysis of the
change in color of plants over time; Overstory c© (https://www.overstory.ai/) helps to
prevent forest fires, deforestation and power outages with the mission to create a more sus-
tainable environment; Starlab c© (https://www.starlab.es/), based in Barcelona, adopts
a different business strategy, focusing on direct contracts with ESA under support of the
Catalan and Spanish Governments.

In terms of technology, we have also found different projects: CosmiQ Works c© (https:
//www.cosmiqworks.org/) focuses on the development of cutting-edge technologies ex-
ploring the rapid advances delivered by computer vision; Azavea c© provides an open source
Raster Vision project making it easy to build computer vision models to understand and
analyze geospatial imagery (https://rastervision.io/).
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3.3. Technology survey

3.3 Technology survey

We develop a software to easily integrate technology able to detect objects of interest
(e.g., buildings, vehicles, roads, etc.), delimit their location in the scene, recognize their
class (e.g., truck, small car, tennis court, swimming pool, etc.) or estimate damage scores
post disaster such as floods, storms, earthquakes, eruptions, wildfires, etc. As a result, it
provides vector data used to display and work on geographic information systems (GIS).
Vector data (.geojson) represents real world features using points and lines within the
GIS environment. Raster data (.geotiff) stores the image of the world divided into tiles.

Object detection in remote sensing images is full of challenges. Present approaches
detecting objects [12, 16, 17, 7, 23, 9, 2] typically fail or lose precision due to the relatively
small size of the target objects and the vast amount of data to be processed in the presence
of multiple “in-the-wild” factors, such as, different cities/countries, viewpoint changes,
occlusions, illuminations, blurriness, and so on (see Fig. 3.2).

Figure 3.2: Challenging appearance variability due to different factors including viewpoint
changes (nadir angle), shadows, daylight changes marked by weather and seasons, etc.
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Additionally, the large scenes of interest processed, and the difficulty of dense object
detection on traffic jams or parking lots are the main problems needed to solve. When
the spatial resolution gets worse, the algorithm has less information to work with, and
it gets harder to distinguish individual cars (see Fig. 3.3). Zooming into one part of the
parking lot below causes quite the arguments. Are there five cars or six? Some say they
can see the shadow of something between the white car and dark car on the right side of
the image, so a car must be there. But others say the parking space is clearly empty. The
assessment of whether or not a car is there is highly subjective. A human must make these
decisions and this is using the highest resolution satellite imagery commercially available.

Figure 3.3: Monitoring vehicles around the Hyundai manufacturing plant in Ulsan, South
Korea. The completed cars are stored in surface lots outside and parked closely together.

The counting of vehicles plays an important role in measuring the behaviour patterns
of traffic flow in cities, as streets and avenues can get crowded easily. We categorize
recent approaches into two groups according to whether they estimate the number of cars
evading or not the hard task of learning to detect individual instances (see Fig. 3.4).

(a) Counting by regression (b) Counting by detection

Figure 3.4: Both supervised approaches require a set of training images with annotations.
(a) defines the presence of a vehicle by putting a single dot on each instance in the image;
(b) specifies the vehicle position by setting the bounding box coordinates on each instance.
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3.3.1 Counting by regression

These methods avoid solving the hard detection problem [10, 16, 13]. Instead, a direct
mapping from the whole image, or from large image patches, to the number of vehicles is
learned. Counting by density algorithms rely on regressors trained to estimate the objects
density per unit area so that the total number can be obtained by integration, without
explicit detection being required. They tend not to require many training samples, but
are usually constrained to the same scene on which it was trained.

3.3.2 Counting by detection

Detection counters work in the more intuitive fashion of localizing each car uniquely
and then counting the localizations [12, 17, 7, 11, 24]. In this work, we follow a deep
learning approach based on SCRDet [24] that combines strategic location sampling and
an ensemble of lightweight convolutional neural networks (CNNs) to quickly count small
vehicles in satellite images that could be used to compute economic indicators based on
it, automatically.

In Fig. 3.5 we show the most popular object detection architecture regarded as Faster
R-CNN [18]. This network consist of: a) feature generation stage to obtain features of the
objects, usually using a CNN (e.g., ResNet-101 [6]); b) Region Proposal Network (RPN)
to generate bounding boxes or locations of possible objects in the image; c) classification
layer to predict which class each object belongs to; and d) regression layer to make the
coordinates of the object bounding box more precise.

Figure 3.5: The Faster R-CNN architecture [18] consists of the RPN as a region proposal
algorithm and the well-known Fast R-CNN as detector baseline.

We crop each satellite image into multiple squared tiles passed through the backbone
CNN (e.g., ResNet-101 [6]) to get the feature maps. For every point in the feature maps,
the RPN has to learn whether an object is present in the input image at its corresponding
location and estimate its size. This is done by placing in the input image a set of “anchors”
for each location given by the output feature map from the backbone CNN. These anchors
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indicate possible objects in various sizes and aspect ratios at this location (see Fig. 3.6b).
Then, the bounding box proposals from the RPN are used to pool features from previous
feature maps. After passing them through two fully connected layers, the features are fed
into the sibling classification and regression branches. The loss is the weighted sum of the
Softmax loss (classification problem) and the regression L2 loss (localization bounding box
coordinates). Finally, we apply non-maximum suppression (NMS) to discard overlapped
bounding boxes due to repeated vehicles in consecutive tiles.

(a) Ground truth (b) RPN candidates (c) Prediction

Figure 3.6: The learning process involves the generation of candidates categorized by the
predicted class probability (cls prob) and the coordinates position (bbox pred). So, we
count occurrences to set an overall number of small vehicles in the image. We show the
results in the image center (best viewed in color and zoomed in).

In addition, as we only need “small vehicles” to infer economic insights, we ignore the
remaining classes annotated (e.g., bus, plane, ship, building, bridge, hospital, swimming
pool, etc.) to save computational time, and we reduce the original anchors size to properly
fit bounding box proposals to the standard car dimension.
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Results

The vehicle detection is a challenging problem due to the small size of the vehicles and
the complex background of man-made objects, which appear visually similar to the cars.
However, recent literature reports noticeable results in the vehicle detection task [9, 24,
11, 2]. A critical question here is whether the models trained and evaluated in the same
labelled data set, generalize or not to the situations present in real-life operation. In this
way, we demonstrate that Mundhenk et al. [16] techniques, which correctly localize cars
90% of the time, and achieve an error rate on car-counting of 5% using 0.15m resolution
images, do not work properly in satellite images with a lower or higher spatial resolution
(see Fig. 4.1).

(a) 0.05m (CARPK [7]) (b) 0.15m (COWC [16]) (c) 0.3m (xView [9])

Figure 4.1: Car detection model following [16] algorithm trained on COWC (0.15m) and
evaluated using different resolutions. Blue and green bounding boxes represent the ground
truth and predictions respectively.

The experimental results of the aforementioned articles, according to the overall detec-
tion rates of the “small vehicle” class in the most challenging data sets, leave much to be
desired. For instance, the average precision (AP) metric, which computes the average pre-
cision value for recall value over 0 to 1, is around 0.7-0.8 in the DOTA benchmark [24, 11],
and 0.4-0.5 in the xView [9] and EAGLE [2] competitions respectively.

In addition, Azimi et al. [2] also demonstrate the lower generalization capabilities of
models trained on a single data base. For instance, a model trained on DOTA imagery
achieves a 0.38 AP on EAGLE, which represents a 27% AP reduction. In this chapter, we
alleviate the problem of detecting vehicles using multi-scale training samples. As we have
just annotated 10 images in our data set over Madrid (see Section 2.3), we train our model
using also different vehicle annotations at different spatial resolutions from COWC [16]
(32 images) and DOTA [23] (1869 images).
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4.1 Implementation

All experiments have been carried out with the settings described in this section. We
crop each satellite image into multiple tiles of 800× 800 pixels as input passed through a
generic object detector based on Faster R-CNN [18]. In this way, we follow SCRDet [24]
public code to initialize our model parameters, but we train a single model using multiple
vehicle annotations at different spatial resolutions from different data bases (i.e., COWC
+ DOTA + Madrid subset), which improves the generalization capabilities of regressors
trained on a single data set.

In our framework, we also generate different samples in each training epoch by applying
random in plane rotations between ±45◦, and randomly mirroring images horizontally to
increase the amount of variability in the data bases. In addition, we apply random scale
changes w.r.t a spatial resolution of 0.3m, resizing each image according to its Ground
Sampling Distance (GSD), which denotes the distance between two consecutive pixels
measured on the ground. A GSD of 0.3m means that one pixel in the image represents
linearly 30cm on the ground (30× 30 = 900cm2 = 0.09m2). As far as we know, this is the
first time that an algorithm successfully combines images at different resolutions to deal
with the lack of satellite data properly annotated.

Training the CNN takes 278 hours using a NVidia Tesla K80 (12GB) GPU provided by
Telefónica, using a batch size of 1 image. The total number of iterations is 268840, which
corresponds to 20 epochs × 13442 image tiles (see Fig. 4.2). At runtime our approach
processes test images on average at a rate of 0.025 FPS, being a surface area between 1.91
and 30.63 km2 (see Table 2.1) processed in approximately 30 to 200 seconds respectively.

(a) Loss (b) Accuracy

Figure 4.2: Visualizing the training loss and accuracy of the whole model over the total
number of epochs. The bold curves denote the smoothed curves for visualization, and the
faint curves denote the original curves.

4.2 Additional telco and traffic data

We use additional data sources in order to support the economic activity indicators
inferred by monitoring vehicles. First, we analyze whether it is possible to include infor-
mation from the remaining BIDA members (see Section 1.1.4).

• Telefónica Movistar c© offers insights from the mobile phone network about the global
trends of groups of people, using the Smart Steps platform (https://luca-d3.com/
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es/productos-servicios/business-insights/crowd-analytics), which studies
antenna activities and divides the city on a grid, while complies with existing reg-
ulations and data anonymization laws. It reports how many people is connected
to each antenna, and every time a mobile changes antenna (handover) this is regis-
tered in the network, billions of times due to the fact that Telefónica have millions
of customers.

The remaining BIDA members such as BBVA c©, Mapfre c©, Banco de España, Instituto
de Estudios Fiscales, etc. communicate data infrequently (e.g., one-year lag) and/or with
a coarse-granularity level (e.g., the whole autonomous community of Madrid). Thus, we
explore other public data sources to provide further insights that correlate with the vehicle
activity.

• City Council of Madrid provides an open data portal where preprocessed data from
traffic sensors located on strategic points in the roads and streets of Madrid city,
can be downloaded (https://datos.madrid.es/portal/site/egob). It provides
data not only on the vehicle count but also on its speed and geographical location.

• Axesor Rating c© estimates Spanish economic activity through 300 enterprises, which
represent a 1.5% of the gross domestic product (PIB) approximately (https://www.
axesor.com/es-ES/es/covid-19/).

4.3 Vehicle presence analysis

First, we analyze the performance of our vehicle detection technology in unrestricted
satellite scenarios. Similar to [2], which reports a 0.38 AP in EAGLE by training a CNN
model with DOTA [23], we achieve a 0.25 AP, which is also a poor detection score by
processing a subset of 10 labelled images in our data set (see Table 2.1). Thus, we consider
that the vehicle detection problem is still far from being completely solved using satellite
images. However, it is worth mentioning that our main objective is to count vehicles. In
this context, we obtain on average a 70% accuracy in the car-counting task, with a ±15%
standard deviation from the mean. Sometimes it is difficult to extract the contour of a car
for accurate detection, which decreases the vehicle detection accuracy, whereas it does not
affect the vehicle count. In Fig. 4.3 we show a representative image where we get a 82.11%
car-counting accuracy. We reach the conclusion that our software fails under most well-
known “in-the-wild” conditions (e.g., densely crowded parking lots, non-distinguishable
objects, etc.), which are common situations in the vast majority of images.

We would like to measure the negative impact of COVID-19 lockdown in Madrid by
automatically monitoring the presence of small vehicles through satellite imagery. The
COVID-19 pandemic in Spain was first confirmed to have spread on 31st January 2020.
On 15th March the national confinement became effective, and it ended on 21st June. All
residents were mandated to remain in their normal residences except to purchase food
and medicines, work or attend emergencies. In Fig. 4.4 we visually perceive a reduction
in the total number of cars before and during the COVID-19 pandemic. Thus, it seems
reasonable to study the overall impact of the lockdown on the traffic volume.

In this way, we consider as 100% the samples with the highest number of localized cars
for each region of interest in Madrid, and consequently, we analyze how this percentage
(i.e., proportion of visible vehicles within the scene) increments/decrements its value along
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Figure 4.3: Counting metrics comparison between manually annotated and automatically
detected vehicles using a “Vicente Calderón” sample (7.64 km2). We show in the image
centre 9998 and 8210 occurrences respectively (best viewed in color and zoomed in). Blue
and green colours represent ground truth and predictions respectively.

(a) 2450 small vehicles before COVID-19 lockdown

(b) 365 small vehicles during COVID-19 lockdown

Figure 4.4: Representative satellite images from “Distrito Telefónica”. It can be noticed
a dramatic reduction in the presence of vehicles automatically detected during COVID-19
lockdown.
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4.3. Vehicle presence analysis

time. First, we show in Fig. 4.5a the evolution of the number of visible cars detected in
the whole autonomous community of Madrid, obtained through the combination of data
extracted from the 22 hot spots (see Table 2.1). In Fig. 4.5b, we also study the results
acquired from a single instance, such as “Manoteras” in the north of the capital. Finally,
in Fig. 4.5c and Fig. 4.5d, we analyze the statistics acquired from two relevant groups, such
as shopping centers (“La Gavia”, “Las Rozas” and “Parquesur”) and hospitals (“Doce de
Octubre”, “Fuenlabrada”, “Alcalá de Henares” and “Hospital San Carlos”) respectively.

We measure the impact of COVID-19 lockdown in Madrid by analyzing these curves.
In Fig. 4.5, we notice this effect in the amount of detected vehicles, which on average
decreases up to 55% from March to April. Surprisingly, we report a significant mean
reduction of 75% in shopping centres probably because non-essential shops closed due
to COVID-19 restrictions. We achieve on average a 40% reduction in traffic occupancy
around hospitals, suggesting that people refused to go, unless they experienced severe
symptoms. Finally, in the Manoteras highway crossings, we set a reduction of only 25%,
because in such a large area (7.63 km2) we also process data around its neighbourhoods
(i.e., Hortaleza, Chamart́ın, and so on), and our software does not allow the distinction
of moving and stationary traffic (see Section 5.1).

(a) Community of Madrid (b) Manoteras highway crossings

(c) Shopping centres (d) Hospitals

Figure 4.5: Timeline curves of how the COVID-19 outbreak is evolving in Madrid since
2020. Red, yellow and blue colours compare different curves obtained using anonymized
and aggregated telco data from Telefónica Movistar c© antennas, traffic statistics acquired
from City Council of Madrid sensors, and by estimating presence of visible cars with our
satellite technology respectively.

As we mentioned before (see Section 4.2), we also use additional data sources. First,
we include anonymized and aggregated telco data acquired from Telefónica Movistar c©

mobile phone devices connecting to antennas within each region of interest. At this point,
we also get on average a reduction of 60% in the autonomous community of Madrid from
March to April in 2020, similar to the 55% obtained using the car-counting measures. In
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Chapter 4. Results

Fig. 4.5 we plot these results in red colour. Although these statistics are consistent, it is
worth noticing that telco data is generated using a time period of 10 minutes, whereas car-
counting is computed at a limited frame (a fixed time value). In addition, those antennas
located near the image boundary would receive data from Movistar c© devices out of the
region of interest. Moreover, we are also restricted because we cannot obtain telco data
before 2020 and/or insights from healthcare areas due to the code of conduct1.

Additionally, we include traffic statistics publicly available from the City Council of
Madrid website. In this case, we show a mean reduction of 80% in the traffic around the
city centre from March to April, which represents a 25% difference with the amount of
vehicles detected (our technology does not allow the distinction of moving and stationary
traffic). In Fig. 4.5 we plot these results in yellow colour. Anyway, we conclude that traffic
reduction rates holds when compared with previous car-counting and telco indicators. It is
also disappointing that traffic information is generated using a time period of 15 minutes,
and traffic sensors are only located at the city centre, thus we cannot download data from
outlying regions in Madrid (“Las Rozas”, “Fuenlabrada”, “Alcalá de Henares”, etc.).

In Fig. 4.6 we report traffic sensors and car-counting statistics since December 2018.
Here, we appreciate in both curves a notable reduction of around 30%-55% during summer
vacations from July to August, and the winter breaks in December. This decrement is
reasonable since Madrid citizens rather spend their holidays in cooler regions in the north
of Spain, or south/east to the Mediterranean beaches. During COVID-19 lockdown, which
was somewhat unexpected, these statistics even fall to a 55%-80% reduction compared to
previous March 2019, which relates to the obedience to a stay-at-home order.

Figure 4.6: Comparison between traffic statistics acquired from sensors and car-counting
estimations over the whole autonomous community of Madrid (see Table 2.1). Note the
differences from March to May 2020 compared to the same period last year.

These indicators serve not only to verify stay-at-home compliance, but also to infer the
economic impact of COVID-19 in a chain of companies such as shopping facilities, hotels,
airlines, petrol filling stations, etc. For instance, counting trucks on roads and highways,
trains on railways and stations, or containers in dry ports are all possibilities of economic
indicators that can also point out problems in the supply chain. In Fig. 4.7 we prove that
economic activity is also correlated with the aforementioned indicators. Axesor Rating c©

data, extracted from 300 enterprises in Spain, confirm an impressive 36.55% and 34.49%
reduction in the number of sales during COVID-19 outbreak, similar to the 55% obtained
using the car-counting measures in April-May.

We reach the conclusion that these insights correlate with official statistics, which ex-
perienced a 34% fall in economic activity during the first two weeks of the COVID-19 lock-

1We gratefully acknowledge Javier Carro Calabor and Arturo Canales González this telco data.
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4.3. Vehicle presence analysis

Figure 4.7: Accurate and timely economic data extracted from small, medium and large
enterprises that represent a 1.5% of the gross domestic product in Spain.

down (https://english.elpais.com/economy_and_business/2020-06-18/spains-economy-fell-34-in-the-first-two-weeks-of-the-coronavirus-lockdown.
html). Consequently, one could imagine trying to improve worldwide measures from the
observed insights through satellite imagery at this spatial resolution. In fact, using more
high-resolution sensors and improved algorithms, these tasks could be done continuously
and at low cost.
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Chapter 5
Conclusions

The activities done at Telefónica c© helped me to foster my professional skills within an
industrial environment, putting into practice the knowledge acquired during my doctoral
studies. In this report, we deal with the problem of analyzing information acquired from
commercial satellite imagery to provide robust insights during the COVID-19 pandemic in
Madrid. The COVID-19 outbreak forced governments worldwide to impose lockdowns and
quarantines to prevent virus transmission, which leave signatures in satellite images that
can be automatically detected and classified using advanced computer vision algorithms.
As our main contribution, we present a framework that counts small vehicles to compute
such indicators automatically.

The availability of annotated data sets has also encouraged research in this area [9, 24,
11, 2]. However, a careful analysis of commercial software based on current algorithms,
reveals the existence of a knowledge gap in how to train a regressor using satellite images
from multiple data bases at different spatial resolutions. In this way, we propose a novel
strategy to combine labelled data, training a vehicle detector that processes WorldView-4
imagery courtesy of Maxar c© (see Table A.1) on average at 40 seconds per image. It is
also worth noticing that repurposing the framework for other economic activities is simple.
The objects to monitor, i.e., roads, planes, ships, etc., can be changed easily.

As a result, we download a set of 153 high-resolution satellite images extracted from
22 hot spots around the community of Madrid (see Table 2.1). It includes images before,
during and after COVID-19 lockdown. First, we measure the car-counting precision using
10 manually labelled images, which leads on average to a 70% precision in the car-counting
task. Secondly, we extract car-counting statistics using all 153 images, where we notice a
55% mean drop in the presence of visible vehicles during the COVID-19 lockdown. Finally,
we also prove the correlation of this indicator using additional data such as, a) telco data
related to Movistar c© mobile phone devices, b) traffic statistics publicly available from the
City Council of Madrid, and c) economic activity from SMEs acquired from Axesor c©.

5.1 Future work

Commercial satellite imagery is currently in a sweet spot, powerful enough to see a
car, but not enough to tell the make and model; collected frequently enough for a farmer
to keep tabs on crops health, but not so often that people could track the comings and
goings of a neighbour. The last few years have seen a number of interesting developments
involving satellites. When future Maxar c© satellites legion start launching in the first half
of 2021, they will provide up to 0.15m high-resolution images of a location in a single day.
And that is just the beginning when it comes to the usability of satellite imagery. Planet c©

and other new satellite companies are working to deploy higher resolution cameras, videos
and radar sensors that can see through clouds to gather even more detail about what is
happening on Earth.
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5.1. Future work

An analyst does not have time in one shift to count the cars manually in each of those
satellite frames. But, they have plenty of time to run all images through computer vision
software, as the one provided in this work, to notice patterns and trends about when the
numbers of cars change and investigate the cause, creating mission-critical information
for influencing decisions, etc.

Although, we consider that the goal of the BDExp has been accomplished, there are
plenty of improvements that could be done in order to achieve better results. We do not
have time-series resources to reason about the moving or static condition of a vehicle, but
we would combine these raster images with vector data that exploits common geometric
properties of roads in maps for filtering those parked vehicles, which are not relevant to
measure economic activities.
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Appendix A
Satellites

Name Orbit type Orbit (km)DaysStart End Organisation Resolution (m)
Landsat 1 Sun Synchronous 907 18 1972 1978 NASA - USA 80
Landsat 2 Sun Synchronous 908 18 1975 1982 NASA - USA 80
Landsat 3 Sun Synchronous 915 18 1978 1983 NASA - USA 30
Landsat 4 Sun Synchronous 705 16 1982 2001 NASA - USA 30
Landsat 5 Sun Synchronous 705 16 1984 2013 NASA - USA 30
RADARSAT-1Sun Synchronous 798 24 1995 2013CSA - Canadian Space Agency
Landsat 7 Sun Synchronous 705 16 1999 NASA - USA 15
Terra Sun Synchronous 705 16 1999 NASA - USA 15
EO-1 Sun Synchronous 705 16 2000 2017 NASA - USA
Aqua Sun Synchronous 705 2002 NASA - USA
ENVISAT Sun Synchronous 783 35 2002 2012 ESA
SPOT 5 Sun Synchronous 832 26 2002 2015 CNES - France 2.5-5
Metop-A Sun Synchronous 817 29 2006 EUMETSAT
RADARSAT-2Sun Synchronous 798 24 2007 MDA - Canada
GeoEye-1 Other 681 2008 DigitalGlobe 0.46
RapidEye Sun Synchronous 630 5.5 2008 2020 Planet - USA 5
WorldView-2 Sun Synchronous 770 1.1 2009 DigitalGlobe 0.46
Pleiades 1A Sun Synchronous 694 26 2011 Airbus Defence and Space 0.5
Metop-B Sun Synchronous 817 29 2012 EUMETSAT
Pleiades 1B Sun Synchronous 694 26 2012 Airbus Defence and Space 0.5
SPOT 6 Sun Synchronous 694 26 2012 Airbus Defence and Space 1.5
CBERS-3 Sun Synchronous 778 26 2013 2013 INPE - Brazil 5
Landsat 8 Sun Synchronous 705 16 2013 NASA - USA 15
PROBA-V Sun Synchronous 820 1 2013 ESA
SkySat-1 Sun Synchronous 578 2013 Planet - USA 0.8
CBERS-4 Sun Synchronous 778 26 2014 INPE - Brazil 5
Deimos-2 Sun Synchronous 620 2 2014 DEIMOS - Spain 0.75
Sentinel-1A Sun Synchronous 693 6 2014 ESA
SPOT 7 Sun Synchronous 694 26 2014 Airbus Defence and Space 1.5
WorldView-3 Sun Synchronous 617 1 2014 DigitalGlobe 0.31
Planet - Dove Sun Synchronous 400 2015 Planet - USA 3
Sentinel-2A Sun Synchronous 786 5 2015 ESA 10
GOES-16 Geostationary 35786 2016 NOAA
Sentinel-1B Sun Synchronous 693 6 2016 ESA
Sentinel-3A Sun Synchronous 814 27 2016 ESA
WorldView-4 Sun Synchronous 617 1 2016 2019 DigitalGlobe 0.31
Sentinel-2B Sun Synchronous 786 5 2017 ESA
Sentinel-5P Sun Synchronous 824 17 2017 ESA
GOES-17 Geostationary 35786 2018 NOAA
Metop-C Sun Synchronous 817 29 2018 EUMETSAT
Sentinel-3B Sun Synchronous 814 2018 ESA
VividX2 Sun Synchronous 505 2018 earth-i

Table A.1: General information about Earth Observation satellites.
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Name Description Bands Mission
AATSR Advanced Along Track Scanning Radiometer 7 ENVISAT
ABI Advanced Baseline Imager 16 GOES-16 (GOES-EAST), GOES-17 (GOES-WEST), GOES-T, GOES-U
AIRS Atmospheric Infrared Sounder 7 Aqua
ALI Advanced Land Imager 9 EO-1
AMSR-E Advanced Microwave Scanning Radiometer for EOS 6 Aqua
AMSU-A Advanced Microwave Sounding 15 Aqua, Metop-A, Metop-B, Metop-C, NOAA-15, NOAA-16, NOAA-17, NOAA-18, NOAA-19
ARGOS-3 (A/DCS) Advanced Data Collection System Metop-A, Metop-B, Metop-C, NOAA-19, SARAL/AltiKa
ASAR Advanced Synthetic Aperture Radar 1 ENVISAT
ASCAT Advanced scatterometer Metop-A, Metop-B, Metop-C
ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer 14 Terra
AVHRR/3 Advanced Very High Resolution Radiometer 6 Metop-A, Metop-B, Metop-C, NOAA-15, NOAA-16, NOAA-17, NOAA-18, NOAA-19
CERES Clouds and Earth’s Radiant Energy System 3 Aqua, NOAA-20 (JPSS-1), Terra, TRMM
DORIS Doppler Orbitography and Radiopositioning Integrated by Satellite 2 ENVISAT, Jason-1, Jason-2, SARAL/AltiKa, SPOT 2, SPOT 3, SPOT 4, SPOT 5
ETM Enhanced Thematic Mapper 8 Landsat 7
EXIS Extreme Ultra Violet and X-ray Irradiance Sensor GOES-16 (GOES-EAST), GOES-17 (GOES-WEST), GOES-T, GOES-U
GIS-MS Visible and NIR 4 GeoEye-1
GIS-PAN Panchromatic 1 GeoEye-1
GLM Geostationary Lightning Mapper 1 GOES-16 (GOES-EAST), GOES-17 (GOES-WEST), GOES-T, GOES-U
GOME-2 Global Ozone Monitoring Experiment-2 4 Metop-A, Metop-B, Metop-C
GOMOS Global Ozone Monitoring by Occultation of Stars 3 ENVISAT
HiRAIS High Resolution Advanced Imaging System 5 Deimos-2
HiRI High Resolution Optical Imager 5 Pleiades 1A, Pleiades 1B
HIRS/4 High Resolution Infra Red Radiation Sounder 20 Metop-A, Metop-B, Metop-C, NOAA-18, NOAA-19
HSB Humidity Sounder for Brazil 4 Aqua
Hyperion High resolution hyperspectral imager with 220 spectral bands 220 EO-1
IASI Infrared Atmospheric Sounding Interferometer 3 Metop-A, Metop-B, Metop-C
IRMSS-2 Infrared Multispectral Scanner-2 4 CBERS-3, CBERS-4
LAC LEISA Atmospheric Corrector 256 EO-1
MERIS Medium Resolution Imaging Specrometer Instrument 15 ENVISAT
MHS Microwave Humidity Sounder 5 Metop-A, Metop-B, Metop-C, NOAA-18, NOAA-19
MIPAS Michelson Interferometer for Passive Atmospheric Sounding 5 ENVISAT
MISR Multi-angle Imaging SpectroRadiometer 4 Terra
MODIS Moderate Resolution Imaging Spectroradiometer (PFM on Terra, FM1 on Aqua) 36 Aqua, Terra
MOPITT Measurement of carbon monoxide in the troposphere 64 Terra
MSI Multispectral Imager (Sentinel-2) 13 Sentinel-2A, Sentinel-2B, Sentinel-2C, Sentinel-2D
MSS (LS 1-3) Multispectral Scanner - Landsat 1,2,3 5 Landsat 1, Landsat 2, Landsat 3
MSS (LS 4-5) Multispectral Scanner - Landsat 4,5 4 Landsat 4, Landsat 5
MUXCam Multispectral Camera 4 CBERS-3, CBERS-4
MWR Microwave Radiometer 2 ENVISAT, ERS-1, ERS-2, Sentinel-3A, Sentinel-3B, Sentinel-3C, Sentinel-3D
NAOMI New AstroSat Optical Modular Instrument 5 AlSat-2A, AlSat-2B, SPOT 6, SPOT 7, VNREDSat-1A
OLCI Ocean and Land Color Instrument 21 Sentinel-3A, Sentinel-3B, Sentinel-3C, Sentinel-3D
OLI Operational Land Imager 9 Landsat 8
PanMUX Panchromatic and Multispectral Camera 4 CBERS-3, CBERS-4
PlanetScope Planet.com, Dove satellites 4 Planet - Dove
RA-2 Radio Altimeter 3 ENVISAT
RADARSAT 2 Radar RADARSAT-2
RBV Return Beam Vidicon Camera 4 Landsat 1
SAR-C Radarsat1 Synthetic Aperture Radar on RADARSAT-1 1 RADARSAT-1
SAR-C Sentinel1 C-band SAR on Sentinel-1A/Sentinel-1B 1 Sentinel-1A, Sentinel-1B, Sentinel-1C, Sentinel-1D
SCIAMACHY Scanning Imaging Absorption Spectrometer for Atmospheric Chartography 8 ENVISAT
SLSTR Sea and Land Surface Temparature Radiometer 11 Sentinel-3A, Sentinel-3B, Sentinel-3C, Sentinel-3D
SpaceView 110 Imaging System Formerly GIS-2, GeoEye Imaging System-2 5 WorldView-4
SRAL SAR Radar Altimeter 2 Sentinel-3A, Sentinel-3B, Sentinel-3C, Sentinel-3D
SUVI Solar Ultra Violet Imager 6 GOES-16 (GOES-EAST), GOES-17 (GOES-WEST), GOES-T, GOES-U
TIRS Thermal Infrared Sensor 2 Landsat 8
TM Thematic Mapper 7 Landsat 4, Landsat 5
Tropomi Tropospheric Monitoring Instrument (O3, NO2, SO2, HCHO, CO, CH4) 8 Sentinel-5P
UHD Camera Ultra High Definition camera (video up to 25fps and stills) 3 VividX2
WFI-2 Wide Field Imager - 2 4 CBERS-3, CBERS-4
WV-3 CAVIS WorldView-3: Cloud, Aerosol, water Vapor, Ice, Snow 12 WorldView-3
WV-3 MSS WorldView-3: Multi spectral sensor 8 WorldView-3
WV-3 PAN WorldView-3: Panchromatic sensor 1 WorldView-3
WV-3 SWIR WorldView-3: Shortwave Infrared sensor 8 WorldView-3
WV110 Standard 4 colors + New 4 colors 8 WorldView-2
WV60 PAN band for WorldView -2 1 WorldView-2

Table A.2: General information about Earth Observation sensors.
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