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Univ. Politécnica Madrid, Spain.
diego.lopez.maroto@alumnos.upm.es

{rvalle,lbaumela}@fi.upm.es

Abstract. Nowadays, Convolutional Neural Nets (CNNs) have become
the reference technology for many computer vision problems, including
facial landmarks detection. Although CNNs are very robust, they still
lack accuracy because they cannot enforce the estimated landmarks to
represent a valid face shape.

In this paper we investigate the use of a cascade of CNN regressors to
make the set of estimated landmarks lie closer to a valid face shape.
To this end, we introduce CRN, a facial landmarks detection algorithm
based on a Cascade of Recombinator Networks. The proposed approach
not only improves the baseline model, but also achieves state-of-the-art
results in 300W, COFW and AFLW that are widely considered the most
challenging public data sets.
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1 Introduction

Facial landmarks detection is a fundamental problem in computer vision with
applications in many real-world tasks such as attributes and pose estimation [1],
facial verification [8], etc. Current state-of-the-art methods are based on deep
Convolutional Neural Nets (CNNs). Lv et al.’s [7] approach uses CNNs to set up
a global and a set of local face parts regressors for fine-grained facial deformation
estimation. Xiao et al. [10] is one of the first approaches that fuse the feature
extraction and regression steps into a recurrent neural network trained end-to-
end. Kowalski et al. [5] and Yang et al. [11] are among the top performers in
the Menpo competition [12]. Both use global similarity transform to normalize
landmark locations followed by a VGG-based and a Stacked Hourglass network
respectively to regress the final shape.

CNN approaches are very robust to face deformations and pose changes due
to the large receptive fields of deep nets. However, they lack accuracy because
of two factors. First, the loss of feature maps resolution in the concatenation of
many convolutional and pooling layers. Second, the difficulty in imposing a valid
face shape on the set of estimated landmark positions.
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The Recombinator Network addresses the first factor by combining features
computed at different scales [3]. This is achieved by processing the image in a set
of branches at different resolutions. Finer and deeper branches pass information
to the coarser ones allowing for the net to combine the information at different
levels of abstraction and scales.

In this paper we address the issue of making the set of estimated landmarks
look like a valid face. To this end we present a method called Cascade of Re-
combinator Networks (CRN) that uses cascade of deep models to enforce valid
face shapes on the set of estimated landmark positions. We also introduce a new
loss function robust to missing landmarks and an aggressive data augmentation
approach to improve Honari et al.’s [3] baseline system.

2 Cascade of Recombinator Networks

In this section we present the Cascade of Recombinator Networks (CRN)
(see Fig. 1). It is composed of S stages where each stage represents a network
that combines features across multiple branches B based on Honari et al.’s [3]
architecture. The output of each stage is a probability map per each landmark
providing information about the position of the L landmarks in the input image.
The maximum of each probability map determines the landmarks positions.

The key idea behind our proposal is to employ a cascade of regressors that
incrementally refine the location of the set of landmarks. The input for each
regressor is the set of probability maps produced by the previous stage of the
cascade. Between each cascade stage, we introduce a map dropout layer that
deletes, with probability p, the map of a landmark (see red-crossed map in
Fig. 1). In this way we force the net to learn the structure of the face, since it
must predict the position of some landmarks using the location of its neighbors.
This idea of ensemble of regressors has been extensively used within the so-called
Cascade Shape Regressor (CSR) framework [4, 5, 11].

In our implementation we use a loss function that is able to handle missing
landmarks. In this way we can use data augmentation with large face rotations,
translations and scalings, labeling landmarks falling outside of the bounding box
as missing. It also enables us to train with data sets where some landmarks are
not annotated, such as AFLW.

Our loss function, L, is given by

L =

N∑
i=1

(
− 1

||wg
i ||1

L∑
l=1

(wg
i (l) ·mg

i (l) · log(mi(l)))

)
, (1)

where mi(l) and mg
i (l) represent the predicted probability map and the ground

truth respectively, wg
i (l) the labeled mask indicator variable (takes value “1”

when a landmark is annotated, “0” otherwise), N the number of training images
and L the number of landmarks.

We have further improved the accuracy of the Recombinator Network base-
line by replacing max-pooling layers with convolutional layers with stride 2.
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Fig. 1: CRN framework architecture diagram. Each stage is a RCN [3] where C1,
C2 and C2′ represent a stride 1 conv layer, stride 2 conv layer and a transpose
convolution with stride 2 respectively. The output of each stage is the input to
the next one. Between each stage we introduce a map dropout layer.

Finally, we found that locating each landmark at the position with maximum
probability is very sensitive to noise. We propose to apply a Gaussian smoothing
filter to each probability map to improve the robustness of the predictions. Thus,
large areas are favored with respect to single pixels with high probability.

3 Experiments

We perform experiments using 300W, COFW and AFLW that are considered
the most challenging public face alignment data sets. To train our algorithm we
shuffle each training subset and split it into 90% train-set and 10% validation-set.

We use common evaluation metrics to measure the shape estimation error.
We employ the normalized mean error (NME), the average euclidean distance
between the ground-truth and estimated landmark positions normalized with
the constant di. Depending on the database we report our results using different
values of di: the distance between the eye centers (pupils), the distance between
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the outer eye corners (corners) and the bounding box size (height). The NME
is given by

NME =
100

N

N∑
i=1

(
1

||wg
i ||1

L∑
l=1

(
wg

i (l) · ‖xi(l)− xg
i (l)‖

di

))
, (2)

where xi(l) and xg
i (l) denote respectively the predicted and ground truth land-

marks positions.

In addition, we also use a second group of metrics based on the Cumulative
Error Distribution (CED) curve. We calculate AUCε as the area under the CED
curve for faces with NME smaller than ε and FRε as the failure rate representing
the percentage of testing faces with error greater than ε.

For our experiments we train the CRN stage by stage, selecting the model
parameters with lower validation error. We crop faces using the bounding boxes
annotations enlarged by 30%. We augment the data in each epoch by applying
random rotations between ±30◦, scaling by ±15% and translating by ±5% of
bounding box size, randomly flipping images horizontally and generating random
rectangular occlusions. We use Adam stochastic optimization with parameters
β1 = 0.9, β2 = 0.999 and ε = 1e−8. We train each stage until convergence.
Initial learning rate is α = 0.001. When the validation error levels out for 10
epochs, we multiply the learning rate by 0.05. The cropped input face is reduced
from 160×160 to 1×1 pixels gradually halving their size across B = 8 branches
applying a stride 2 convolution with kernel size 2×21. All layers contain 68
filters to describe the required landmarks features. We apply a Gaussian filter
with σ = 31 to the output probability maps to reduce the noise effect. Finally,
we set the number of stages S = 2 since more stages report a poor improvement.
Training using AFLW takes 24 hours using a NVidia GeForce GTX 1080Ti GPU
(11GB) with a batch size of 32 images.

At run-time our method requires on average 40 ms to process a detected face,
a rate of 25 FPS. This processing speed could be halved reducing the number of
CNN stages, at the expense of a slight reduction in accuracy (see CRN (S=1)
at Tables 1, 2, 3 and 4).

We compare our model with the top algorithms in the literature. We show
in Tables 1, 2, 3 and 4 the results reported in their papers. We have also trained
DAN [5], RCN [3], and GPRT [6] with the same settings, including same training,
validation and bounding boxes. In Fig. 2 we plot the CED curves. In the legend
we provide the AUC8 and FR8 values for each algorithm.

From the results in Tables 1 and 2 we can conclude that in the 300W data
set our approach provides results with an accuracy comparable to the best in
the literature. However, we notice that Yang et al. [11] takes several seconds
to process one image, whereas ours runs in real-time. In COFW we report the
best result in the literature (see Table 3). Similarly, in the largest and most
challenging data set, AFLW, we claim to report the best result, since TSR [7]

1 5×5 images are reduced to 2×2 pixels applying a kernel size of 3×3.
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Fig. 2: Cumulative error distributions sorted by AUC for each data set.

Method
Common Challenging Full

pupils corners pupils corners pupils corners
NME NME NME NME NME NME AUC8 FR8

RCN [3] 4.70 - 9.00 - 5.54 - - -
RCN+DKM [3] 4.67 - 8.44 - 5.41 - - -
DAN [5] 4.42 3.19 7.57 5.24 5.03 3.59 55.33 1.16
TSR [7] 4.36 - 7.56 - 4.99 - - -
RAR [10] 4.12 - 8.35 - 4.94 - - -
SHN [11] 4.12 - 7.00 4.90 - - - -
CRN (S=1) 4.26 3.07 8.69 6.01 5.09 3.62 55.62 2.75
CRN (S=2) 4.12 2.97 7.90 5.47 4.83 3.44 57.44 1.88

Table 1: Error of face alignment methods on the 300W public test set.
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Method
Indoor Outdoor Full
corners corners corners

NME AUC8 FR8 NME AUC8 FR8 NME AUC8 FR8

DAN [5] - - - - - - 4.30 47.00 2.67
SHN [11] 4.10 - - 4.00 - - 4.05 - -
CRN (S=1) 4.42 45.91 1.66 4.45 45.25 2.66 4.43 45.59 2.16
CRN (S=2) 4.28 47.36 2.66 4.25 47.32 2.00 4.26 47.35 2.33

Table 2: Error of face alignment methods on the 300W private test set.

Method
pupils

NME AUC8 FR8

RAR [10] 6.03 - -
Wu et al. [9] 5.93 - -
SHN [11] 5.6 - -
CRN (S=1) 5.75 30.91 11.04
CRN (S=2) 5.49 33.13 7.88

Table 3: COFW results.

Method
height
NME

Bulat et al. [2] 2.85
CCL [13] 2.72
TSR [7] 2.17
CRN (S=1) 2.29
CRN (S=2) 2.21

Table 4: AFLW results.

ignores the two landmarks attached to the ears, which are the ones with largest
error (see Table 4).

If we consider the CED metrics in Fig. 2, we can see that our approach,
CRN, is the one with highest AUC values and smallest FR. In all experiments
our CED curve is consistently above the rest except for the cGPRT [6] algorithm
in the 300W public data set. In this case, cGPRT reports better results in “easy”
faces, with NME below 3.5, and we are much better in the difficult cases, with
higher NMEs, and in the final FR8 and global AUC8.

We have also compared CRN with the original RCN baseline model and its
denoising key-point model approach (RCN+DKM) [3]. Our modifications to the
basic net together with the cascade have boosted the result to the top of the
state-of-the-art.

Finally, in Fig. 3, we report qualitative results for all data sets. Here we have
also included the recent Menpo competition [12] images whose test annotations
have not been released.

4 Conclusions

In this paper we have introduced CRN, a facial landmarks detection algo-
rithm that exploits the benefits of a cascade of CNN regressors to make the set
of estimated landmark positions lie closer to the valid shape of a human face.



7

(a) 300W public

(b) 300W private

(c) COFW

(d) AFLW

(e) Menpo

Fig. 3: Representative results using CRN in 300W, COFW, AFLW and Menpo
testing subsets. The first three faces and the following three ones show respec-
tively successful and failure cases. Blue and green colors represent ground truth
and shape predictions.

We have proved experimentally that our improvements to the basic Recom-
binator model together with the cascade approach and the data augmentation
boost the performance to achieve state-of-the-art results in the 300W data set
and the best reported results in COFW and AFLW.

The analysis of the CED curves show that our approach is consistently above
all its competitors except for the easy/frontal images in the 300W public set,
for which cGPRT [6] has better results. This proves that CNN approaches are
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more robust in challenging situations, but a standard cascade of regressors with
handcrafted local features such as cGPRT may achieve better results when it is
properly initialized. To facilitate the reproduction of our results we will release
our implementation after publication.
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