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Multi-task head pose estimation in-the-wild

Roberto Valle, José M. Buenaposada and Luis Baumela

Abstract—We present a deep learning-based multi-task approach for
head pose estimation in images. We contribute with a network architec-
ture and training strategy that harness the strong dependencies among
face pose, alignment and visibility, to produce a top performing model for
all three tasks. Our architecture is an encoder-decoder CNN with resid-
ual blocks and lateral skip connections. We show that the combination of
head pose estimation and landmark-based face alignment significantly
improve the performance of the former task. Further, the location of
the pose task at the bottleneck layer, at the end of the encoder, and
that of tasks depending on spatial information, such as visibility and
alignment, in the final decoder layer, also contribute to increase the
final performance. In the experiments conducted the proposed model
outperforms the state-of-the-art in the face pose and visibility tasks.
By including a final landmark regression step it also produces face
alignment results on par with the state-of-the-art.

Index Terms—Head pose estimation, multi-task learning, face align-
ment, occlusions detection.

F

1 INTRODUCTION

Head pose greatly affects facial appearance. It is one of the parameters
that influences to a largest extent the performance of many face anal-
ysis tasks. For this reason it is a fundamental step in computer vision
algorithms estimating attention [1], identifying social interaction [2],
recognizing faces [3] or robustly estimating facial attributes [4],
[5]. It is a challenging problem in “in-the-wild” conditions, i.e.,
in presence of extreme orientations, partial occlusions and varying
resolution, illumination, facial hair and makeup. Although it has been
often considered as by-product or auxiliary task of facial landmark
location [6], recent results prove that it is much more efficient
than landmark estimation and it may achieve superior performance
in subsequent face analysis tasks, such as recognition [3]. In this
paper we present a multi-task approach to head pose estimation in
unrestricted images. We exploit the strong dependencies among head
pose and landmark-related tasks within a multi-task Convolutional
Neural Network (CNN) to produce a top performing model.

The multi-task learning (MTL) paradigm encompasses a set of
learning techniques that provide effective mechanisms for sharing
information among multiple tasks. It enables the use of larger and
more diverse data sets, that improve the regularization during training
and the generalization of the final model [7]. MTL is intimately related
to transfer learning (TFL). In TFL a model is trained for one or more
auxiliary tasks and subsequently refined for a main target task [8],
[9]. Traditionally MTL implies a simultaneous or parallel treatment
of all tasks [7], whereas in TFL tasks are learned sequentially. In our
approach we combine parallel and sequential learning, so it cannot be
clearly cast into one of the above two schemes. We rather generalize
the traditional concept of MTL to include both. Following other
approaches in the literature [10] we consider different degrees of
MTL asymmetry. In this regard TFL is an extremely asymmetric MTL
scheme in which auxiliary tasks are only used for pre-training. In our

• Roberto Valle and Luis Baumela are with the Departamento de Inteligen-
cia Artificial, Universidad Politécnica de Madrid, Campus de Monte-
gancedo s/n, 28660 Boadilla del Monte, Spain.
E-mail: rvalle@fi.upm.es and lbaumela@fi.upm.es
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proposal we adopt an asymmetric approach where we seek to optimize
head pose using visibility and alignment as auxiliary tasks. However,
as we show in our experiments, the co-operation in our model among
all three tasks is so high that all of them achieve state-of-the-art results
in the most popular benchmarks and improve the performance they
would otherwise achieve independently.

A key element in a multi-task CNN is the architecture of the model
and the location of each task in the net. A natural approach is to share
bottom layers among all tasks, since they model low-level features,
whereas top layers, that capture high level features, are specific to
each task [11]. In the context of face processing, some approaches
have completely separate networks to model each attribute [12], others
share all features in a common backbone [13], and others combine
feature maps from different parts of the encoder network [5]. In our
architecture, an encoder-decoder CNN, we carefully place each task
to optimize the final performance. We locate head pose, a holistic task,
at the end of the encoder. In this way the network bottleneck acts as
embedding representing face pose. Visibility and alignment tasks are
located at the decoder end, since they require information about the
spatial location of landmarks in the image.

To train our model we leverage on the large face landmarks anno-
tated data sets available. We first train the CNN for the landmarks-
based face alignment task. Then we fine-tune it for head pose,
face alignment and landmarks visibility. In the most asymmetric
incarnation of our model, once trained, we may dispose of the decoder
and the associated alignment and visibility tasks to produce a very
efficient head pose estimation system. Alternatively, we may keep
the full trained model and use the landmarks visibility and alignment
outputs of the CNN as input to a novel face landmarks regression
module based on an ensemble of regression trees. This model further
improves the accuracy of landmarks location by imposing a valid face
shape on the set of regressed landmarks.

We evaluate our model for all three tasks using COFW, AFLW
and AFLW2000-3D landmark-based data sets. In these experiments
our model beats the top competing approaches in the head pose and
visibility estimation tasks. It also achieves performance comparable
with the state-of-the art for the landmark-based face alignment task.
We also evaluate head pose estimation with Biwi. Although it was
not acquired in-the-wild, this data set is a widely used marker-less
benchmark for head pose estimation. Here our results also establish a
new state-of-the-art.

In summary, we propose a multi-task approach for head pose es-
timation. The proposed solution combines a good model architecture,
training strategy and a set of complementary tasks that boost final
performance. The resulting model achieves top results for all three
tasks, head pose, face alignment and visibility. In Fig. 1 we display
our predictions for some frames of a video from 300VW [14]. It shows
a remarkable tracker-like stability although each frame is processed
independently.

2 RELATED WORK

The unique ability of neural networks to transfer and share knowledge
among various tasks is one of the reasons for its present success. This
is typically done using MTL techniques. In computer vision MTL
has been widely used to simultaneously learn related tasks such as
semantic segmentation and surface normal prediction [11]. In the
facial analysis field, head pose is often used as a pre-processing step
to help estimate face landmarks [15], [16], [17]. Other approaches si-
multaneously estimate head pose with facial landmarks [4], [5], Facial
Action Units [18], gender [5] and various other facial attributes [19].
Alternatively, facial attributes estimation have also been combined
with landmark detection [13], [19], [20]. In our approach we follow
an asymmetric MTL scheme where the primary task is head pose
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Fig. 1: Simultaneous head pose estimation, facial landmark location and their visibility predictions when processing a video from 300VW [14].
Green and red points show visible and non-visible landmarks respectively. The co-ordinate system qualitatively represents head pose.

estimation and use face landmarks as an auxiliary task that regularize
and improve the performance of the primary task.

Pre-training a deep model with a large and general data set
such as ImageNet has been a common practice for multiple vision
tasks [8]. In the context of face analysis, ImageNet [5], [21], [22],
[23], [24], [25], and other large face-related data sets, such those for
face recognition [19], [26], [27], [28], have also been extensively
used for predicting various facial attributes. More recently, self-
supervised tasks have also emerged as powerful unsupervised pre-
training mechanisms [29], [30], [31], [32]. For estimating head pose,
pre-training with an unsupervised face alignment task yields better
results than using a large supervised face recognition data set [29].
This is possibly due to the geometrical cues learned in the alignment
process. Following the same reasoning, we hypothesize that face
landmark estimation is related to head pose. So, pre-training with
the former task may improve the performance of the latter. Moreover,
there is a lack of annotated “in-the-wild” head pose data sets. With
our approach we leverage on the abundance of in-the-wild landmark-
annotated data to train our model. As we show in the experiments, pre-
training with a facial landmark estimation task improves head pose
accuracy, beating other ImageNet pre-trained competing models [21],
[22], [23], [24].

In a MTL strategy the final results depend on the affinity or degree
of co-operation among the tasks involved [9], [33]. In extreme situa-
tions negative transfer may actually hinder the final performance [10],
[34]. Many approaches that simultaneously estimate head pose with
other facial attributes, e.g., [4], [5], [19], combine various competing
tasks in the same network layer. In our experiments we show that head
pose does not co-operate with landmark-related tasks when placed in
the same layer. To address this issue we propose to use an encoder-
decoder CNN and locate head pose, a holistic task, at the encoder end,
that represents global face information. We place landmark-related
tasks at the decoder end, where spatial information is represented at
the finest detail (see Fig.2).

The best head pose estimation algorithms address the problem
from a single task perspective. In the simplest case they fine-tune a
backbone previously trained on ImageNet [3], [21], [22]. QuatNet and
GLDL are respectively the state-of-the-art in AFLW and AFLW2000-
3D. They use standard CNN-based models pre-trained in ImageNet.
QuatNet combines ordinal and L2 regression losses representing
head pose angles with quaternions [23]. GLDL learns a Gaussian
distribution per co-ordinate using a Gaussian Labels Distribution
Loss (GLDL) [24]. FDN and FSA-Net are the top performers in the
Biwi data set. Both approaches stand on specifically taylored network
architectures. FDN uses a three-branch network with a feature decou-
pling module to explicitly learn discriminative features for each pose
angle [25]. FSA-Net combines spatially grouped pixel-level features
of activation maps from different layers [35]. A recent alternative
achieves state-of-the-art results on Biwi training with synthetically
generated data [36]. To this end it introduces an adversarial domain
adaptation approach for partially shared and continuous label spaces.

We leverage on the ideas discussed above to build a top performing

Fig. 2: Multi-task encoder-decoder for the estimation of head
pose, LED(pED), rigid and deformable facial landmarks location,
LAE(p

AE) and LCE(h), and their visibilities, LCE(v). We locate
the head pose and rigid landmarks estimation tasks at the bottleneck
layer, and the non-rigid face deformation and visibilities at the decoder
end.

head pose estimation algorithm. Our architecture is an standard
encoder-decoder CNN with residual blocks and lateral skip con-
nections. The key element of our proposal is a MTL scheme that
combines a set of complementary tasks strategically located in the
architecture. With our approach we improve not only the prediction
accuracy, but also the computational and data efficiency, compared to
training different models with data sets for each task.

3 MULTI-TASK HEAD POSE ESTIMATION

In this section we present our two-stage framework termed MNN+OR.
First, we describe a novel Multi-task CNN (MNN) that estimates head
pose, landmark heatmaps and their visibilities (see Fig. 2). Second, we
introduce an Occlusion-aware Regressor (OR) that we use to regress
the location of facial landmarks (see Fig. 3).

3.1 Multi-task Neural Network (MNN)
The most successful CNN architectures for facial landmark detection
use an encoder-decoder network with lateral connections such as U-
Net [37] and RCN [38]. Both capture local and global features at
different scales. The popular Hourglass architecture [39] has a similar
topology with extra convolutional layers in the lateral connections.

In this section, we introduce an architecture termed Multi-task
Neural Network (MNN) based on a U-Net encoder-decoder with
bottleneck residual blocks [40] instead of its original convolutional
layers. The residual block lets us reduce the number of operations
and increase depth while preserving the gradient back propagation
through. We also include lateral skip connections that link symmetric
layers between the encoder and the decoder preserving the spatial
information (see the Supplementary Material).
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MNN is a symmetric encoder-decoder architecture each with 9
stages. The encoder reduces the spatial extent of the input face image
from 256 × 256 to 1 × 1 pixels. In the depth dimension we increase
the number of feature maps from 64 in the first layer up to 256 in the
bottleneck. We also include BatchNormalization and ReLu after each
convolutional layer.

We encourage the encoder to act as feature embedding that learns
a holistic face representation, favouring the exchange of information
among all tasks. We attach to this layer two losses related to head pose
estimation. The decoder learns local features tailored to the estimation
of non-rigid landmark locations and their visibilities. Henceforth, we
describe these losses and tasks.

Holistic tasks. The location of the loss functions associated to our
tasks is essential given that the feature maps in different layers of the
CNN represent the image information at different levels of abstraction
and aggregation.

Since the head pose is a global attribute, we compute it from the
bottleneck layer at the encoder end. Our objective here is to estimate
the six parameters of the rigid transformation, p ∈ R6, representing
the relative pose between the head and the camera. To this end, we
include two fully connected layers, pED and pAE , with 6 outputs
each at the end of the encoder (see Fig. 2). We optimize these layers
with two loss functions,

LED(pED) =

N∑
i=1

||p̃i − pED
i ||2, (1)

LAE(p
AE) =

N∑
i=1

(
L∑

l=1

(
w̃l

i

||w̃i||1
· ||x̃l

i − π(pAE
i ,Xl)||2

))
, (2)

where N denotes the number of images, L the number of landmarks,
pED
i and pAE

i the predicted pose parameters for the i-th training
image using each loss, p̃i the ground truth head pose parameters for
the i-th training image, x̃l

i ∈ RL×2 the l-th landmark ground truth co-
ordinates for the i-th training image, Xl ∈ RL×3 the 3D co-ordinates
of the l-th landmark, and π the camera projection.

Each loss plays an important role in our model. On the one hand,
LED(pED) directly minimizes the euclidean error of pose parameters
and provides an accurate and unambiguous pose estimation, pED . On
the other hand, LAE(p

AE) measures the alignment error produced
by the rigid projection of the mean 3D face model, xi = π(pAE

i ,X).
The latter provides a better landmark initialization for the OR stage.
However, the pose estimated, pAE , has projection ambiguity and esti-
mation error caused by X not being the actual 3D landmark location,
but that of the mean face. The combination of both losses provides
unambiguous and accurate pose regression, as well as accurate rigid
landmark localization.

Position-dependent tasks. Facial landmarks detection and their
visibility estimation require both global and abstract features with a
fine spatial resolution. Therefore, we use the feature maps at the end
of the MNN decoder to estimate these attributes (see Fig. 2). For the
landmark location task we introduce a convolutional layer producing
[256×256×L] feature maps and a softmax activation layer to generate
heatmaps, such that

∑256×256
p h(p) = 1. For the visibility task, we

add a pooling layer with kernel size 256× 256 to generate the vector
of L visibilities associated to our landmarks, v. To train this model
we use the cross-entropy loss,

LCE(h) =

N∑
i=1

(
L∑

l=1

(
w̃l

i

||w̃i||1

256×256∑
p=1

(
−h̃l

i(p) · log(hl
i(p))

)))
,

(3)

LCE(v) =

N∑
i=1

(
L∑

l=1

(
w̃l

i

||w̃i||1

2∑
p=1

(
−ṽl

i(p) · log(vl
i(p))

)))
,

(4)

Fig. 3: The OR is initialized with the 3D face model projected
landmarks, x0, and their visibilities, v. It incrementally updates the
landmark location discarding the predictions of those regression trees
whose features are extracted around occluded landmarks, shown in
red.

where N is the number of images, L the number of landmarks, h̃
l

i,
hl
i the l-th ground truth and predicted heatmaps for the i-th training

image, and ṽl
i, v

l
i the l-th ground truth and predicted visibilities for

the i-th training image.
To handle unlabelled landmarks we include w̃l, a landmark mask

indicator variable (w̃l
i = 1 when the l-th landmark is annotated, and

w̃l
i = 0 otherwise). This loss also enables data augmentation with

large rotations, translations and scales, labelling landmarks falling
outside of the bounding box as missing (w̃l

i = 0).
Multi-task loss. The loss function L(pED,pAE ,h,v) computes

a global error obtained from the pose parameters pED , pAE , the
landmark heatmaps, h, and the visibilities, v, by combining them
using a weighted sum of the losses,

L(pED,pAE ,h,v) = αp1
LED(pED) + αp2

LAE(p
AE) +

αhLCE(h) + αvLCE(v).
(5)

We empirically tune the weights αp1
, αp2

, αh and αv to balance
the importance of all tasks. To this end, we train each task individually
and determine the relative loss magnitudes when the learning process
converges and ponder them accordingly.

3.2 Occlusion-aware Regressor (OR)

To achieve top results in the facial landmarks detection task we use
an Ensemble of Regression Trees (ERT) that regularizes the MNN
result by enforcing it to be a valid face shape [41]. To this end, we
introduce an Occlusion-aware Regressor (OR). It is different from
other landmark regressors in the literature [42], [43], [44], [45] in that
our approach leverages on the robust landmark location and visibility
estimation available at the MNN decoder to regress the landmark co-
ordinates with top accuracy.

OR initialization. We use the head pose estimated by the MNN
(see Section 3.1) to project AFLW mean 3D face model onto the
image using x0

i = π(pAE
i ,X), a L × 2 matrix (see Fig. 3). This

provides the OR with an initial estimation of the scale, and position
of the target face shape. With this initialization we ensure that x0

i is a
valid face shape. This guarantees that the predictions in the next step
of the algorithm, using an ERT, will also be valid face shapes [41].
Here, we also initialize the visibilities according to the head pose (i.e.,
self-occlusions due to extreme head pose orientations) and the MNN
prediction (i.e., occlusions), instead of regressing the visibility in the
ERT cascade like [42], [44], [45].

Non-rigid face shape deformation. Since the OR is initialized
with the rigid face shape in the correct pose (see Fig. 3), to align the
face it only needs to estimate the remaining non-rigid deformation of
the face. To handle occlusions we incorporate the visibility labels for
each i-th training image, {vi}Ni=1, estimated by the the MNN. The
initial shape is progressively refined in the cascade in S stages by ex-
tracting shape indexed features on the heatmaps {φ(hi,vi,x

s−1
i )}Ni=1

following a coarse-to-fine procedure like [45], where xs−1
i represents

the shape of the i-th sample on the previous stage. The novelty of
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OR is that, the 2D displacements estimated by trees whose associated
landmark is occluded are not added to the final estimation (see Fig. 3).

4 EXPERIMENTS

To evaluate our approach we perform experiments using four in-
the-wild landmark-related data bases and one head pose data set
acquired in laboratory conditions. COFW [42] focuses on occlusions.
It provides 1345 faces annotated with the positions and the binary
occlusion labels for 29 landmarks. On average 28% of the landmarks
are occluded. AFLW [46] provides a collection of 25993 faces,
with 21 facial landmarks annotated depending on their visibility. For
our experiments we discard some images with reported annotation
errors [47]. We divide AFLW test subset into intervals of [0◦,
30◦], [30◦, 60◦] and [60◦, 90◦] according to head absolute yaw
angle. AFLW2000-3D [48] consists of 2000 faces from AFLW semi-
automatically re-annotated with 68 3D facial landmarks. We divide it
into intervals of [0◦, 30◦], [30◦, 60◦] and [60◦, 90◦]. Each interval
consists of 1306, 462 and 232 faces respectively. It has been typically
used for testing head pose and facial landmark location algorithms
using 300W-LP as train set [48]. This last data set provides 61225
synthesized face images from 300W [49], also re-annotated with 68
3D landmarks using the same algorithm. The semi-automatic pipeline
used to label 300W-LP and AFLW2000-3D has been criticised for
not producing accurate annotations for extreme poses and occluded
faces [50]. For this reason we only use 300W-LP/AFLW2000-3D for
comparing with the state-of-the-art that follows this protocol.

Although it was not acquired in-the-wild, we also evaluate our
model with Biwi-Kinect [51]. It contains 15677 images from 24
sequences of 20 subjects acquired in a controlled environment with
a Kinect sensor. Since Biwi does not contain landmark annotations,
we follow the protocol presented in [22] using 300W-LP as train set.

4.1 Evaluation Metrics

We use the Mean Absolute Error (MAE) metric to quantify the head
pose estimation error,

MAE =
1

N

N∑
i=1

(|p̃i − pi|) , (6)

where N is the number of face images and p̃i, pi represent the ground
truth and predicted pose parameters respectively.

We also use the Normalized Mean Error (NME) as a metric to
measure the shape estimation error

NME =
100

N

N∑
i=1

(
L∑

l=1

( w̃l
i

||w̃i||1
· ||x

l
i − x̃l

i||2
di

))
, (7)

where x̃i and xi are respectively the ground truth and estimated shape
for the i-th training image and di is a normalization value. We use
different values of di: the distance between eye pupils (pupils) and
the bounding box height (height).

Finally, we report recall percentage at 80% precision to compare
landmarks visibility prediction with other published methods.

4.2 Implementation Details

We train our models using Adam with an initial learning rate
α = 10−3, which is halved whenever the loss plateaus for 15 epochs.
We shuffle each training set and split it into 90% train and 10%
validation. We also augment our training data by applying to each
sample the following random operations: in plane rotation between
±45◦, scaling by ±15%, translation by ±5% of the bounding box
size, mirroring face image horizontally and colour change multiplying
each HSV channel by a random value between [0.5, 1.5]. Additionally,
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Fig. 4: Blue, orange and green colored learning curves compare the
overall validation loss, L, obtained with MNN by fine-tuning from
landmarks, training from scratch, and locating the rigid pose losses at
the end of the decoder respectively.

we include synthetic rectangular occlusions to enforce the encoder-
decoder to learn visibility.

When provided we crop faces using the data set bounding box an-
notations. In 300W-LP/AFLW2000-3D and Biwi we use respectively
the rectangle enclosing the annotated landmarks and the thresholded
depth image. These detections are enlarged by 30% and resized
to 256×256 pixels. In the landmark-annotated data sets we use
POSIT [52] with a set of 2D (image) and 3D (face model) landmark
correspondences to compute the head pose. We use as model the mean
3D face shape provided with AFLW [46].

At runtime our implementation of MNN+OR processes test im-
ages on average at a rate of 12.8 FPS using a NVidia GeForce GTX
1080Ti (11GB) GPU and a dual Intel Xeon Silver 4114 CPU at
2.20GHz (2×10 cores/40 threads, 128 GB), where the MNN takes 66
ms and the OR 12 ms per face using C++, Tensorflow and OpenCV
libraries. We may also dispose of the MNN decoder and the OR
regressor to build a very efficient head pose estimation module. The
resulting model infers head pose using the GPU at a rate of 62.5 FPS.

4.3 Ablation study
In this section, we analyze the contribution of each component in our
framework in the final performance.

4.3.1 Task location
In the first experiment we evaluate the importance of locating the
head pose losses at the MNN bottleneck. To this end we adopt a MTL
strategy pre-training the model with the landmark location task. The
green and blue curves in Fig. 4 show respectively the loss achieved
when locating both rigid pose losses, LED and LAE , at the end of the
decoder (L = 18.6) and at the end of the encoder (L = 7.9). In the
second case we achieve a reduction of 57.5% in the final loss. We infer
that this gain is caused by two reasons. First, the superiority of the
holistic features extracted from the embedding in the encoder-decoder
bottleneck. Second, because head pose and landmark-related tasks do
not co-operate when located in the same layer. Hard parameter sharing
among these tasks decreases the final performance. From now on, we
attach the rigid head estimation losses, LED and LAE , at the end of
the encoder.

4.3.2 Training strategy
For these experiments, we incorporate two 2D landmark-based in-
the-wild data sets. 300W [49] provides 68 manually annotated facial
landmarks. We followed the most established approach and divide
the annotations into 3148 training and 689 testing images (public
competition). Thereafter, we also perform experiments on the 300W
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private benchmark, using previous 3837 images for training and 600
newly updated images as testing set. WFLW [53] consists of 7500
extremely challenging training and 2500 testing images divided into
six subgroups, pose, expression, illumination, make-up, occlusion and
blur, with 98 fully manual annotated landmarks. Since these data sets
do not provide any head pose label, we compute it using POSIT [52]
with AFLW [46] mean 3D face shape.

Here we evaluate our model under different training strategies.
In the simplest case we follow a single task approach and minimize
LED(pED) in Eq. (1) (Pose row in Table 1). We also consider several
symmetric and asymmetric MTL schemes. In the symmetric case
we train our model from scratch with all three tasks, minimizing
L(pED,pAE ,h,v) in (5) (Sym row in Table 1, orange stroke in
Fig. 4). We also look at an asymmetric MTL scheme in which
we pre-train with the image alignment task, optimizing LCE(h) in
Eq. (3). Once this training converges, we include the head pose and
visibility tasks and optimize L(pED,pAE ,h,v) (Pre+Sym row in
Table 1, blue stroke in Fig. 4). Finally, in the most asymmetric MTL
situation, we pre-train with the image alignment task, optimizing
LCE(h). Upon convergence, we then only optimize the head pose
task, LED(pED) (Pre+Pose row in Table 1).

The orange and blue curves in Fig. 4 respectively display the
difference between using the symmetric MTL training scheme (L =
8.7) against the asymmetric MTL that pre-trains with the landmarks
task followed by a symmetric MTL with all three tasks (L = 7.9). In
our problem pre-training regularizes the learning process and achieves
a 9% reduction in the final loss, L.

Further, in Table 1 we show head pose estimation results for
different landmark-based data sets and training strategies. On average
we achieve the largest improvement in mean MAE when changing
from single task learning (first row) to MTL (three bottom rows). In
the worst case, when moving from single task to the symmetric MTL
case, we achieve a 7.5% reduction in mean MAE. The asymmetric
approaches, that involve a pre-training step with the landmark face
alignment task, achieve the best results, with a reduction of 11.9% in
the average mean MAE with respect to the single task approach. There
is no difference whether after pre-training we refine the model only
for the pose task or for all three tasks. Hence, the second model will
be the selected configuration and training strategy in our experiments.

Method 300W pub 300W priv COFW AFLW WFLW Avg
Single task Pose 1.91 2.22 2.67 3.43 2.46 2.54

Multi-task
Sym 1.76 1.97 2.57 3.35 2.10 2.35
Pre+Sym 1.59 1.96 2.36 3.22 2.08 2.24
Pre+Pose 1.56 1.96 2.34 3.23 2.11 2.24

TABLE 1: Head pose mean MAEs for different training strategies.
First row (Pose) single task encoder. Second row (Sym) symmetric
MTL for all three tasks. Third row (Pre+Sym) MTL learning scheme
pre-training with face landmarks. Fourth row (Pre+Pose) asymmetric
MTL scheme pre-training with landmarks fine-tuned with pose.

We also evaluate the importance of the MTL scheme for visibility
estimation using the COFW data set. Fist, we train MNN only for
the visibility task. In this case, we achieve a recall of 21.75% at 80%
precision for occlusion detection. This is a poor result, far worse than
most published results (see Table 3), possibly caused by the small size
of the training data set. However, using our selected MTL strategy,
we get a recall of 72.12%, a large improvement in recall at the typical
80% precision point. So, with a small training data set, such as COFW,
the combination of multiple related tasks within a MTL scheme boosts
the final performance.

4.3.3 Occlusion-aware regressor
Here we evaluate the contribution of the OR stage to the performance
of the landmark location task. We report the NME of, 1) MNN alone,

locating each landmark by the maximum response on its heatmap;
2) the full MNN+OR framework. We show in Tables 4, 5 and 6 the
performances in COFW, AFLW and AFLW2000-3D data sets. These
results prove the importance of the OR stage to regularize the MNN
landmark predictions. Model MNN+OR reduces the NME of model
MNN in COFW by 10.8%, in AFLW by 3% and in AFLW2000-3D
by 6.9%. The improvement grows proportionally with the presence of
self-occluded parts (i.e., AFLW2000-3D) and non-visible landmarks
(i.e., COFW) in the data sets.

4.4 Comparison with the state-of-the-art
In this section we evaluate our model in the most challenging
benchmarks for all three tasks.

4.4.1 Head pose
In Table 2 we compare our head pose estimation proposal with the
best published results in the literature. We train two MNN models.
For AFLW there is no standard protocol to determine the training
and testing partitions. We use the benchmark proposed in [21]. For
testing in AFLW2000-3D and Biwi we train our model with 300W-LP,
like [22], [23], [24], [25], [35]. However, we use the pose estimated
from the correct 300W-LP landmarks from [50].

We outperform the state-of-the-art in AFLW (3.22 MAE), which
represents an 11% mean MAE reduction over QuatNet [23], the best
reported result in the literature. Moreover, in our MTL strategy we
only use AFLW annotations, whereas QuatNet and many competing
approaches use additional training data [21], [22], [23], [24], [29]. In
the experiment evaluated on AFLW2000-3D and Biwi our approach
establishes two new top results, again, with no extra training data.
While in Biwi we reduce in 6.9% FDN’s [25] MAE, in AFLW2000-
3D our result only improves by 2.3% GLDL’s [24]. This is caused by
the inaccurate AFLW2000-3D annotations in extreme head poses [50].
While our approach was trained with poses estimated from the
corrected landmarks, our competitors were trained on the original
300W-LP annotations, poisoned with the same errors. We re-annotated
AFLW2000-3D with the poses estimated from the correct landmarks.
We denote this data set AFLW2000-3D-POSIT. When we evaluate
our mdel with it, the mean MAE goes down to 1.71.

The results in Table 2 must be considered with caution. It is
obvious that landmark detection and head pose estimation tasks are
clearly more connected if the pose is calculated from the landmarks.
Moreover, the MAEs of AFLW and AFLW2000-3D-POSIT have a
negative (optimist) bias. This is because in them the head pose in
the train and test sets is computed with the same semi-automatic
estimation procedure. The same argument applies to all our com-
petitors in AFLW2000-3D. However, our results would be positively
(pessimistically) biased in this data set, since some of its annotations
are not correct. Hence, our unbiased MAE for AFLW2000-3D would
be between the 3.83 and 1.71 bounds. In contrast, the experiment with
Biwi involves different train/test data sets and annotation procedures.
Hence, it provides the most accurate MAE estimations. Although, in
a data set taken in laboratory conditions.

4.4.2 Facial landmarks visibility
In Table 3 we compare the landmarks visibility estimation that we
obtain with MNN, against the best published results in the literature.
To evaluate this task we use COFW [42], as far as we known, the only
data set with annotated occlusions.

With our approach, we get a 72.12% recall at 80% precision, a
new state-of-the-art for this data set. The notable improvement with
respect to the closest competitor, 3DDE [45], is caused by two key
differences. First, the MTL strategy boost the performance of the
landmark visibility task. Second, in 3DDE the visibility is estimated
by the landmark ERT regressor, like in [42], [44], whereas in the
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Method AFLW AFLW2000-3D AFLW2000-3D-POSIT Biwi
yaw pitch roll mean yaw pitch roll mean yaw pitch roll mean yaw pitch roll mean

FAb-Net [29] 10.70 7.13 5.14 7.65 - - - - - - - - - - - -
Kepler [4] 6.45 5.85 8.75 7.01 - - - - - - - - 8.08 17.2 16.1 13.8
Hyperface [5] 7.61 6.13 3.92 5.88 - - - - - - - - - - - -
HopeNet [22] 6.26 5.89 3.82 5.32 6.47 6.55 5.43 6.15 - - - - 4.81 6.60 3.26 4.89
GLDL [24] 6.00 5.31 3.75 5.02 3.02 5.06 3.68 3.92 - - - - 4.12 5.61 3.14 4.29
HF-ResNet [5] 6.24 5.33 3.29 4.95 - - - - - - - - - - - -
CCR [54] 5.22 5.85 2.51 4.52 - - - - - - - - - - - -
Amador et al. [21] 5.59 4.79 2.83 4.40 - - - - - - - - - - - -
FSA-Caps-Fusion [35] - - - - 4.50 6.08 4.64 5.07 - - - - 4.27 4.96 2.76 4.00
QuatNet [23] 3.93 4.31 2.59 3.61 3.97 5.61 3.92 4.50 - - - - 4.01 5.49 2.93 4.14
FDN [25] - - - - 3.78 5.61 3.88 4.42 - - - - 4.52 4.70 2.56 3.93
MNN 4.16 3.07 2.43 3.22 3.34 4.69 3.48 3.83 2.15 1.40 1.58 1.71 3.98 4.61 2.39 3.66

TABLE 2: Head pose MAEs for AFLW, AFLW2000-3D and Biwi. AFLW200-3D-POSIT is the outcome of re-annotating AFLW2000-3D with
the corrected landmarks annotations from [50].

Method Full
occlusion

RCPR [42] 40
Wu et al. [43] 44.43
Wu et al. [55] 49.11
ECT [56] 63.4
3DDE [45] 63.89
MNN 72.12

TABLE 3: Recall of landmarks visibility estimation methods at 80%
precision using COFW.

proposed approach the visibility is estimated in the MNN model. This
result proves again the relevance of our MTL approch.

4.4.3 Facial landmark location
We compare the MNN+OR framework with the state-of-the-art in face
landmark regression. To this end we use results reported for 2D and
3D face alignment data sets. We use COFW and AFLW to provide
a reference comparison with data sets involving 2D landmarks and
AFLW2000-3D for 3D landmarks.

We analyze in Table 4 the MNN+OR landmark location perfor-
mance in COFW, the common benchmark to evaluate occlusions.
Here, we achieve a performance comparable to the best reported
result for this data set, CHR2C [57], based on two stacked U-Net-
like models.

Method Full
pupils

RCPR [42] 8.50
TCDCN [20] 8.05
Wu et al. [43] 6.40
Wu et al. [55] 5.93
ECT [56] 5.98
PCD-CNN [17] 5.77
SHN [39] 5.6
Wing [58] 5.44
ODN [59] 5.30
3DDE [45] 5.11
CHR2C [57] 5.09
MNN 5.65
MNN+OR 5.04

TABLE 4: Face alignment NME using COFW.

In Table 5 we compare MNN+OR with previous literature using
AFLW images. This is a challenging database due to the large number
of faces with extreme poses and occluded landmarks, which are not
annotated. In this case, again, we achieve a performance comparable
to the best reported result in the literature.

Finally, in Table 6, we also evaluate our model using a 3D data set.
To this end we train our model with 300W-LP and test in AFLW2000-

Method [0◦, 30◦] [30◦, 60◦] [60◦, 90◦] Full
height height height height

CCR [54] - - - 5.72
Hyperface [5] 3.93 4.14 4.71 4.26
Kepler [4] - - - 2.98
AIO [19] 2.84 2.94 3.09 2.96
HF-ResNet [5] 2.71 2.88 3.19 2.93
Binary-CNN [60] 2.77 2.60 2.64 2.85
PCD-CNN [17] 2.33 2.60 2.64 2.49
3DDE [45] 2.10 2.00 2.04 2.06
CHR2C [57] 2.07 1.86 1.81 1.98
MNN 2.12 1.90 1.89 2.03
MNN+OR 2.05 1.86 1.85 1.97

TABLE 5: Face alignment NME using AFLW.

3D. In this case, we achieve 2.58 NME in the Full set. This result
sets the new state-of-the-art for this data set, with a 16.2% reduction
in NME with respect to the best published result in the literature,
MHM [61] (3.08 NME), based on a two-stage cascade of heatmap
regressors. Even without the final OR regressor, the MNN model
alone already improves in 10% the previous best result. Our two-stage
hybrid strategy is specially effective in 3D face alignment, where
the OR stage is initialized using the extremely accurate head pose
estimated by the MNN (see Fig. 3).

Method [0◦, 30◦] [30◦, 60◦] [60◦, 90◦] Full
height height height height

RCPR [42] 4.26 5.96 13.18 7.80
3DSTN [62] 3.15 4.33 5.98 4.49
3DDFA [48] 2.84 3.57 4.96 3.79
PRN [63] 2.75 3.51 4.61 3.62
Binary-CNN [60] 2.47 3.01 4.31 3.26
MHM [61] 2.36 2.80 4.08 3.08
MNN 2.71 2.53 3.48 2.77
MNN+OR 2.54 2.24 3.34 2.58

TABLE 6: Face alignment NME using AFLW2000-3D.

5 CONCLUSIONS

In this paper we have presented a supervised multi-task approach to
head pose, facial landmark location and visibility estimation. It is
based on a heatmap encoder-decoder CNN, MNN, followed by an
ensemble of regression trees to estimate the landmark co-ordinates.
Rather than using head pose as a by-product or auxiliary task for
landmark estimation, in our approach landmark-related tasks are used
to boost head pose estimation. However, they are only required at
training time. During testing we may dispose of the decoder and
landmark regression modules to produce an extremely efficient head
pose regressor with the best reported accuracy in the literature. In
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our head pose estimation experiments with landmark-based data sets
we improve the best reported result in AFLW, QuatNet [23], and
GLDL [24], the top performer in AFLW2000-3D. We also establish
a new state-of-the-art in Biwi, a data set acquired in laboratory
conditions and accurately annotated from depth images.

The MNN model and the MTL training strategy are fundamental
to achieve top performance with our framework. In the ablation
analysis we show that we get the largest improvement when switching
from single task to a multi-task approach. We can further improve the
performance if we adopt an asymmetric MTL scheme and pre-train the
MNN with the face landmark estimation task. This confirms previous
results showing that pre-training a model with a hard problem signifi-
cantly improves the performance of other related tasks [64]. Also, our
ablation shows that hard parameter sharing between head pose and
face landmark estimation is detrimental of the final performance. This
also confirms that multi-task and transfer (pre-training) relationships
are different [33]. To address this issue and to provide each task with
the appearance information aggregated at the best level of abstraction,
we hook up the head pose loss to the encoder end, whereas the losses
of spatially related tasks, such as landmark location and visibility, are
attached to the decoder end.

Our model also reaches top performance in the two landmark
related tasks. In visibility estimation it achieves 72.12% recall at
80% precision in COFW. A 13% improvement over the previous
reported state-of-the-art, 3DDE [45]. We also compute the location
of face landmarks using a novel occlusion-aware regressor (OR), that
estimates face deformation from the heatmaps of visible landmarks.
The full MNN+OR achieves results comparable to the state-of-the-art,
3DDE and CHR2C [45], [57], when evaluated in AFLW and COFW.
In AFLW2000-3D, where self-occlusions play a key role, it sets a
reduction of 16% over the previous state-of-the-art, MHM [61].

A fundamental problem to build a head pose estimation algorithm
is the lack of training data. We propose a MTL strategy that takes
advantage of the data bases available with manually labelled face
landmarks. Pre-training with large object or face recognition data sets
are alternative popular means to address this issue. We have proved
that in the context of head pose estimation our proposal beats this
strategy. This is due to the better co-operation between head pose and
face landmark tasks. To further increase the robustness and accuracy
of head pose estimation, our approach may be combined with self-
supervised training [29], [30], [31], [32] and the use of synthetically
generated data sets [36].

It is difficult to establish an state-of-the-art for head pose esti-
mation in-the-wild, due to the lack of accurately annotated data sets.
Present in-the-wild head pose evaluation methodologies are based on
landmark data bases, such as AFLW and 300W-LP/AFLW2000-3D.
The semi-automatic pipeline used to process them introduces errors
in the train and test set annotations that bias the evaluation. Using re-
annotated 300W-LP/AFLW2000-3D head poses we were able to upper
and lower bound the performance of our approach in this situation.
Biwi’s evaluation methodology, based on train/test data sets acquired
with different technologies and annotation algorithms, provides a
more realistic performance estimation in laboratory conditions.

The proposed approach not only provides a satisfactory prediction
accuracy but also a good computational efficiency. Instead of evaluat-
ing three different models, one for each task, we use a single encoder-
decoder CNN, with an extremely efficient ERT, to simultaneously
solve all three tasks at a rate of 12.8 FPS. However, if we are only
interested in estimating head pose as a preliminary face processing
step [3], our encoder-only model achieves 62.5 FPS.
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