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Abstract

Many of the existing approaches address pose estimation in laboratory conditions. We
present a real-time algorithm that estimates the head-pose from unrestricted 2D gray-
scale images. We propose a classification scheme, based on a Random Forest, where
patches extracted randomly from the image cast votes for the corresponding discrete
head-pose.

Patch-based channel features

e Our features are the difference between the average values in two rectangles, R; and
R>, in a channel «
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where q € R are pixel coordinates.

e Channels are gray-scale values, Sobel borders and 35 Gabor filters.

Figure 1: Sample channels used in our approach.

Training regression forest

e Train each decision tree using a randomly selected set of patches from a random
subset of the training faces.

e Optimize each weak learner by selecting the 6 = (R, Ry, @), from a random pool of
candidates ¢ = (0, 7), that maximizes the information gain

Se{L,R}

where 7 details the threshold on the feature value, P.(¢) = {P|f(P,0) < 7}, Pr(¢) =
P\ Pr(¢), and H(Ps(¢)) is the class uncertainty measure.

e In our case, H(P) = log(cv/2me) is the Gaussian differential entropy:.

H(Ps(9))
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Figure 2: Head-pose prediction using ditferent face image patches.

Results

Experiments laboratory

Our proposal has a MAE close to the state-of-the-art in this database.
All three approaches with better results use holistic HOG-based face
features [2, 3, 1]. This global feature is slightly more informative, in
this constrained context, for estimating face pose than the set of local
patches that we use in our approach.

Pointing-04
Method MAE Accu%acy (0°)
Stiefelhagen [4] | 9.5° 52.0%
Haj [2] 6.56° 67.36%
Hara [3] 5.29° -
Geng [1] 4.24° 73.30%
Our method 7.84° 55.19%

Experiments in-the-wild

Our approach achieves the best performance, both in terms of MAE
and classification accuracy. It submits a frame rate of 80 FPS on an
Intel Core i7 CPU processor at 3.60GHz with 8 cores multi-threaded,
300 times faster than the second best approach, Zhu et al. [6].

Method AFLW AFW

MAE Accuracy (<15°) MAE Accuracy (<15°)
Haj [2] - - - 78.7%
Zhu [6] - - - 81.0%
Sundararajan [5] | 17.48° 58.05% 17.20° 58.33%
Our method 12.26° 72.57% 12.50° 83.54%
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Figure 3: Cumulative head-pose error distribution and confusion matrix for AFLW.
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Figure 4: Sample results for Pointing-04, AFLW and AFW databases. Green and blue lines indicate respectively pose estimation and ground truth yaw angle.
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