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Abstract
Many of the existing approaches address pose estimation in laboratory conditions. We
present a real-time algorithm that estimates the head-pose from unrestricted 2D gray-
scale images. We propose a classification scheme, based on a Random Forest, where
patches extracted randomly from the image cast votes for the corresponding discrete
head-pose.

Patch-based channel features
•Our features are the difference between the average values in two rectangles, R1 and
R2, in a channel α
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where q ∈ R2 are pixel coordinates.
•Channels are gray-scale values, Sobel borders and 35 Gabor filters.

Figure 1: Sample channels used in our approach.

Training regression forest

•Train each decision tree using a randomly selected set of patches from a random
subset of the training faces.
•Optimize each weak learner by selecting the θ = (R1, R2, α), from a random pool of

candidates φ = (θ, τ ), that maximizes the information gain

IG(φ) = H(P)−
∑

S∈{L,R}

|PS(φ)|
|P|

H(PS(φ))

where τ details the threshold on the feature value, PL(φ) = {P|f (P, θ) < τ}, PR(φ) =
P \ PL(φ), andH(PS(φ)) is the class uncertainty measure.
• In our case,H(P) = log(σ

√
2πe) is the Gaussian differential entropy.

Head-pose estimation

Figure 2: Head-pose prediction using different face image patches.

Experiments laboratory
Our proposal has a MAE close to the state-of-the-art in this database.
All three approaches with better results use holistic HOG-based face
features [2, 3, 1]. This global feature is slightly more informative, in
this constrained context, for estimating face pose than the set of local
patches that we use in our approach.

Method Pointing-04
MAE Accuracy (0◦)

Stiefelhagen [4] 9.5◦ 52.0%
Haj [2] 6.56◦ 67.36%
Hara [3] 5.29◦ -
Geng [1] 4.24◦ 73.30%
Our method 7.84◦ 55.19%

Experiments in-the-wild
Our approach achieves the best performance, both in terms of MAE
and classification accuracy. It submits a frame rate of 80 FPS on an
Intel Core i7 CPU processor at 3.60GHz with 8 cores multi-threaded,
300 times faster than the second best approach, Zhu et al. [6].

Method AFLW AFW
MAE Accuracy (≤15◦) MAE Accuracy (≤15◦)

Haj [2] - - - 78.7%
Zhu [6] - - - 81.0%
Sundararajan [5] 17.48◦ 58.05% 17.20◦ 58.33%
Our method 12.26◦ 72.57% 12.50◦ 83.54%

Figure 3: Cumulative head-pose error distribution and confusion matrix for AFLW.
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Results

Figure 4: Sample results for Pointing-04, AFLW and AFW databases. Green and blue lines indicate respectively pose estimation and ground truth yaw angle.
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