

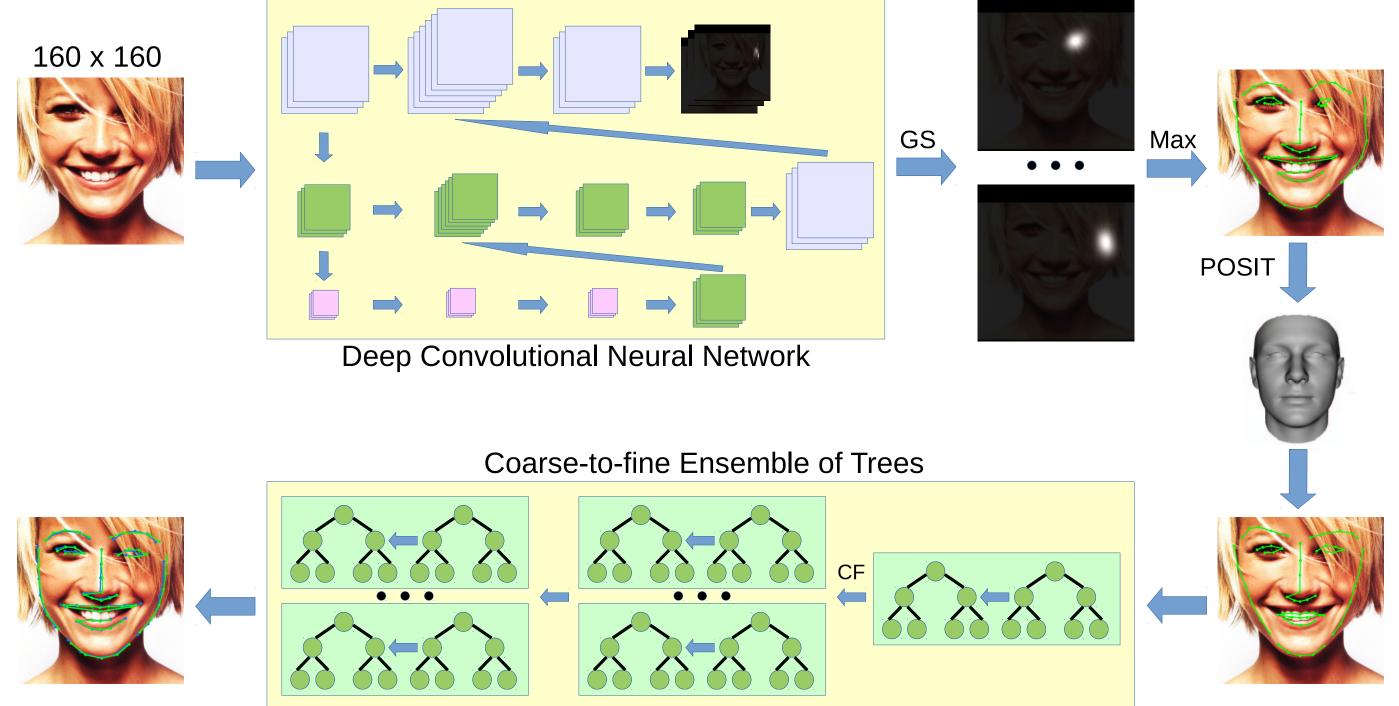
# A Deeply-initialized Coarse-to-fine Ensemble of Regression Trees for Face Alignment

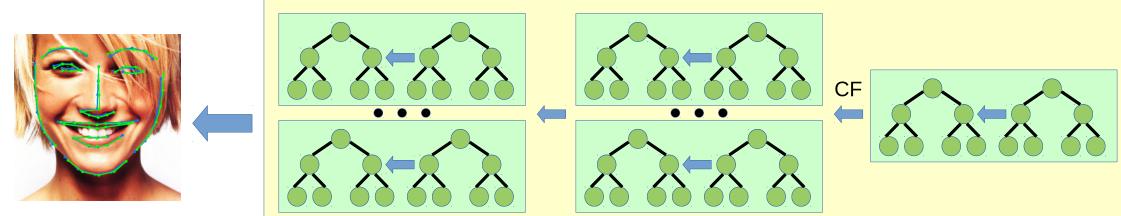
### **Problem Definition and Contribution**

Facial landmarks detection is a crucial step for many face analysis problems such as verification, recognition, attributes estimation, etc.

**Key contributions:** We present DCFE, a robust method that combines the best of existing approaches.

- A CNN to obtain a set of probability maps without face shape enforcement.
- A 3D model to exploit rigid pose information.
- A properly initialized ERT to estimate non-rigid face deformation.





## Experiments

|             | Common         |      | Challenging      |      | Full           |      |         |               |
|-------------|----------------|------|------------------|------|----------------|------|---------|---------------|
| 300W public | pupils corners |      | pupils   corners |      | pupils corners |      |         |               |
|             | NME            | NME  | NME              | NME  | NME            | NME  | $AUC_8$ | $FR_{\delta}$ |
| RCN [2]     | 4.67           | _    | 8.44             | _    | 5.41           | _    | _       | _             |
| DAN [3]     | 4.42           | 3.19 | 7.57             | 5.24 | 5.03           | 3.59 | 55.33   | 1.16          |
| TSR [4]     | 4.36           | -    | 7.56             | -    | 4.99           | -    | -       | -             |
| RAR [7]     | 4.12           | _    | 8.35             | -    | 4.94           | -    | -       | -             |
| SHN [8]     | 4.12           | -    | 7.00             | 4.90 | -              | -    | -       | _             |
| DCFE        | 3.83           | 2.76 | 7.54             | 5.22 | 4.55           | 3.24 | 60.13   | 1.59          |

|              | Indoor<br>corners |         |        | Outdoor<br>corners |         |        | Full<br>corners |         |        |
|--------------|-------------------|---------|--------|--------------------|---------|--------|-----------------|---------|--------|
| 300W private |                   |         |        |                    |         |        |                 |         |        |
|              | NME               | $AUC_8$ | $FR_8$ | NME                | $AUC_8$ | $FR_8$ | NME             | $AUC_8$ | $FR_8$ |
| MDM [5]      | _                 | _       | _      | _                  | _       | _      | 5.05            | 45.32   | 6.80   |
| DAN [3]      | _                 | -       | -      | _                  | -       | -      | 4.30            | 47.00   | 2.67   |
| SHN [8]      | 4.10              | -       | -      | 4.00               | -       | -      | 4.05            | -       | -      |
| DCFE         | 3.96              | 52.28   | 2.33   | 3.81               | 52.56   | 1.33   | 3.88            | 52.42   | 1.83   |
|              | 1                 |         |        | 1                  |         |        | 1               |         |        |

| COFW                  | pupils<br>NME AUC <sub>8</sub> FR <sub>8</sub> |       |      | occlusion<br>precision/recall | AFLW        | height<br>NME |
|-----------------------|------------------------------------------------|-------|------|-------------------------------|-------------|---------------|
| DAC-CSR [1]           | 6.03                                           | -     | -    | _                             | CCL [9]     | 2.72          |
| Wu <i>et al</i> . [6] | 5.93                                           | -     | -    | 80/49.11                      | DAC-CSR [1] | 2.27          |
| SHN [8]               | 5.6                                            | -     | -    | _                             | TSR [4]     | 2.17          |
| DCFE                  | 5.27                                           | 35.86 | 7.29 | 81.59/49.57                   | DCFE        | 2.17          |

Roberto Valle<sup>1</sup>, José M. Buenaposada<sup>2</sup>, Antonio Valdés<sup>3</sup>, Luis Baumela<sup>1</sup> <sup>1</sup> Univ. Politécnica de Madrid 🔍, <sup>2</sup> Univ. Rey Juan Carlos 🛱 , <sup>3</sup> Univ. Complutense de Madrid 🛞 http://www.dia.fi.upm.es/~pcr/research.html

#### Algorithm

**1.** CNN to obtain probability maps: Obtain a set of probability maps,  $\mathcal{P}(I)$ , indicating the position of each landmark in the input image. The maximum of each smoothed probability map determines the 2D landmark locations.



2. 3D face model: Compute the initial shape by fitting a rigid 3D head model to the estimated 2D landmarks locations. We project the 3D model onto the image using the rigid transformation estimated by the POSIT algorithm.



#### References

- [1] Feng, Z., Kittler, J., Christmas, W.J., Huber, P., Wu, X.: Dynamic attentioncontrolled cascaded shape regression exploiting training data augmentation and fuzzy-set sample weighting. CVPR (2017)
- [2] Honari, S., Yosinski, J., Vincent, P., Pal, C.J.: Recombinator networks: Learning coarse-to-fine feature aggregation. CVPR (2016)
- [3] Kowalski, M., Naruniec, J., Trzcinski, T.: Deep alignment network: A convolutional neural network for robust face alignment. CVPRW (2017)
- [4] Lv, J., Shao, X., Xing, J., Cheng, C., Zhou, X.: A deep regression architecture with two-stage re-initialization for high performance facial landmark detection. CVPR (2017)
- [5] Trigeorgis, G., Snape, P., Nicolaou, M.A., Antonakos, E., Zafeiriou, S.: Mnemonic descent method: A recurrent process applied for end-to-end face alignment. CVPR (2016)
- [6] Wu, Y., Ji, Q.: Robust facial landmark detection under significant head poses and occlusion. ICCV (2015)
- [7] Xiao, S., Feng, J., Xing, J., Lai, H., Yan, S., Kassim, A.A.: Robust facial landmark detection via recurrent attentive-refinement networks. ECCV (2016)
- [8] Yang, J., Liu, Q., Zhang, K.: Stacked hourglass network for robust facial landmark localisation. CVPRW (2017)
- [9] Zhu, S., Li, C., Change, C., Tang, X.: Unconstrained face alignment via cascaded compositional learning. CVPR (2016)

3. ERT for non-rigid shape estimation: ERTs are very efficient and precise when properly initialized. Let  $\mathcal{S} = \{s_i\}_{i=1}^N$  be the set of train face shapes, where  $s_i = (I_i, \mathbf{x}_i^g, \mathbf{v}_i^g, \mathbf{w}_i^g, \mathbf{x}_i^0)$ : training image,  $I_i$ ; ground truth shape,  $\mathbf{x}_i^g$ ; ground truth visibility label,  $\mathbf{v}_i^g$ ; annotated landmark label,  $\mathbf{w}_i^g$  and initial shape for regression training,  $\mathbf{x}_i^0$ .

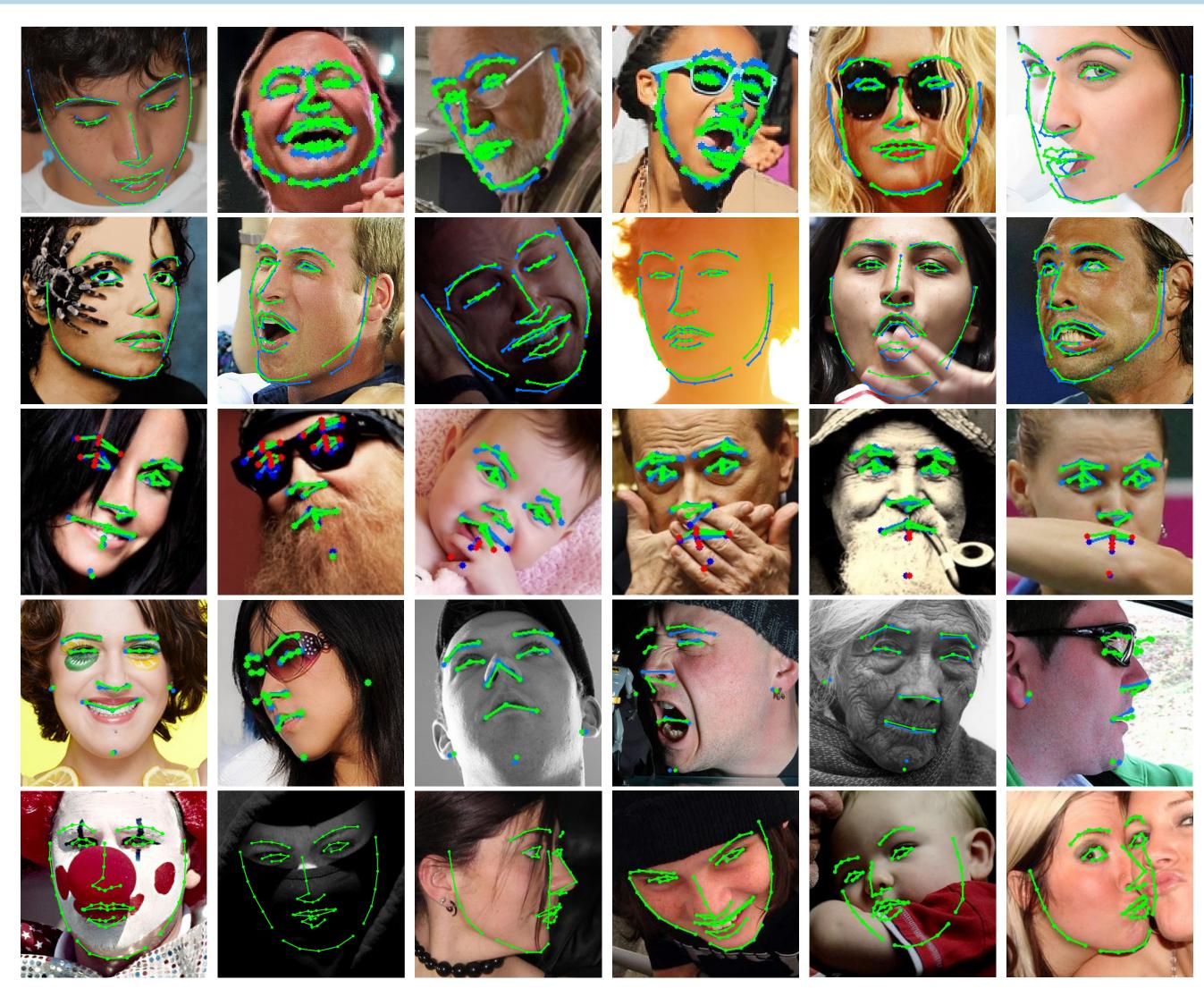
**Input:** Training data S, TGenerate augmented training samples set,  $S_A$ **for** t=1 **to** *T* **do** 

Extract features for all samples,  $\mathcal{F}_A = \{f_i\}_{i=1}^{N_A} = \{\phi(\mathcal{P}(\mathbf{I}_i), \mathbf{x}_i^{t-1}, \mathbf{w}_i^g)\}_{i=1}^{N_A}$ Learn coarse-to-fine regressor,  $\mathcal{C}_t^{\mathbf{v}}$ , from  $\mathcal{F}_A$  and  $\mathcal{U}_{t-1} = \{(\mathbf{x}_i^{t-1}, \mathbf{v}_i^{t-1})\}_{i=1}^{N_A}$ Update current shapes and visibilities,  $\{(\mathbf{x}_i^t, \mathbf{v}_i^t) = (\mathbf{x}_i^{t-1}, \mathbf{v}_i^{t-1}) + \mathcal{C}_t^{\mathbf{v}}(f_i)\}_{i=1}^{N_A}$ end for

Output:  $\{\mathcal{C}_t^{\mathbf{v}}\}_{t=1}^T$ 

- Feature extraction. The feature is computed as the difference between two pixels values from a FREAK pattern around a random landmark and its associated probability map  $\mathcal{P}(I)$ .
- Learn coarse-to-fine regressor. A key problem is the lack of samples showing all possible combinations of face parts deformations. We introduce the coarse-to-fine ERT architecture to provide local improvements in difficult samples.

#### Results



Acknowledgements: The authors gratefully acknowledge funding from the Spanish Ministry of Economy and Competitiveness under project TIN2016-75982-C2-2-R.



