

Head-pose Estimation In-the-Wild Using a Random Forest

Roberto Valle¹ José Miguel Buenaposada² Antonio Valdés³ Luis Baumela¹

> ¹ Univ. Politécnica Madrid **(1)** {rvalle, lbaumela}@fi.upm.es

² Univ. Rey Juan Carlos ü josemiguel.buenaposada@urjc.es

³ Univ. Complutense Madrid * avaldes@ucm.es

July 14, 2016

Valle, Buenaposada, Valdés, Baumela Hea

Head-pose estimation

イロン イボン イヨン

What is it? What use? Previous work State of the art

Head-pose estimation

Predicting the relative orientation between the viewer and a target head

from the appearance in an image.

Valle, Buenaposada, Valdés, Baumela

Head-pose estimation

・ 一 マ ト ・ 日 ト ・

What is it? What use? Previous work State of the art

Head-pose estimation

Predicting the relative orientation between the viewer and a target head

from the appearance in an image.

We consider the problem of estimating discretized yaw angles

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

What is it? What use? Previous work State of the art

Applications

Preprocessing step for

Facial attributes. Identity, age, gender, expression, ...

HMI, FoA, Gaze.

Image: A image: A

Head-pose estimation

What is it? What use? **Previous work** State of the art

イロト イボト イヨト イヨト

Depending on the estimation method

- Subspace approaches.
- Flexible models.
- Classification.
- Regression.

What is it? What use? Previous work State of the art

Depending on the estimation method

Subspace approaches. Facial appearance changes lie on a low-dimesional manifold.

[Sundararajan, AMFG15], [BenAbdelkader, ECCV10], [Balasubramanian, CVPR07]

- Flexible models.
- Classification.
- Regression.

・ 一 マ ト ・ 日 ト ・

What is it? What use? Previous work State of the art

Depending on the estimation method

- **Subspace approaches**. Facial appearance changes lie on a low-dimesional manifold.
- Flexible models. Fit a deformable model and estimate pose from the position of a set of landmarks. [Zhu, CVPR12]

- Classification.
- Regression.

・ 同 ト ・ ヨ ト ・ ヨ ト

What is it? What use? Previous work State of the art

Depending on the estimation method

- **Subspace approaches**. Facial appearance changes lie on a low-dimesional manifold.
- Flexible models. Fit a deformable model and estimate pose from the position of a set of landmarks.
- Classification. Discretize poses in a group of classes. [Wu, PR08]

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction Wh Proposal Wh Experiments Pre Conclusions Sta

What is it? What use? Previous work State of the art

Depending on the estimation method

- **Subspace approaches**. Facial appearance changes lie on a low-dimesional manifold.
- Flexible models. Fit a deformable model and estimate pose from the position of a set of landmarks.
- Classification. Discretize poses in a group of classes.
- Regression. Estimate a continuous mapping function. [Haj, CVPR12], [Geng, CVPR14], [Hara, ECCV14]

Head-pose estimation

< ロ > < 同 > < 三 > < 三 >

What is it? What use? **Previous work** State of the art

Depending on the input data

• Colour images. [All previous]

Depth images. [Fanelli, IJCV 13]

Valle, Buenaposada, Valdés, Baumela

Head-pose estimation

∍⊳

What is it? What use? Previous work State of the art

Benchmarks

Faces "in the lab".

- Pointing 04.
- MultiPie.

Faces "in the wild".

Annotated Facial Landmarks in the Wild (AFLW).

<ロト < 同ト < 目ト < 目ト

Annotated Faces in the Wild (AFW).

What is it? What use? Previous work State of the art

Benchmarks

Faces "in the lab".

■ **Pointing 04.** 2790 images of 15 subjects spanning discrete yaw and pitch poses from -90° to 90° with 15° interval.

Valle, Buenaposada, Valdés, Baumela

Head-pose estimation

What is it? What use? Previous work State of the art

Benchmarks

Faces "in the lab".

- Pointing 04.
- MultiPie. More than 750,000 images of 337 people, 15 view points, 19 illumination conditions, facial expressions.

Valle, Buenaposada, Valdés, Baumela

Head-pose estimation

What is it? What use? Previous work State of the art

Benchmarks

Faces "in the lab".

- Pointing 04.
- MultiPie.
- Faces "in the wild".
 - Annotated Facial Landmarks in the Wild (AFLW). 25993 faces from *Flickr*, 59% female, 41% male. 380k manually annotated facial landmarks (21 point markup).

Annotated Faces in the Wild (AFW).

(日)

What is it? What use? Previous work State of the art

Benchmarks

Faces "in the lab".

- Pointing 04.
- MultiPie.

Faces "in the wild".

- Annotated Facial Landmarks in the Wild (AFLW).
- Annotated Faces in the Wild (AFW). 250 images with 468 challenging faces providing discrete yaw poses from -90° to 90° with 15° interval.

Valle, Buenaposada, Valdés, Baumela

Head-pose estimation

< ロ > < 同 > < 三 > < 三 >

What is it? What use? Previous work State of the art

Best results

Faces "in the lab".

Method	Pointing-04 MAE
Stiefelhagen ICPRW04	9.5°
Haj CVPR12	6.56°
Hara ECCV14	5.29°
Geng CVPR14	4.24°

イロン イヨン イヨン イヨン

э

Faces "in the wild".

What is it? What use? Previous work State of the art

Best results

- Faces "in the lab".
- Faces "in the wild".

Method	AFLW MAE	AFW MAE
Sundararajan CVPR15	17.48°	17.20°

э

Valle, Buenaposada, Valdés, Baumela Head-pose estimation

Head-pose estimation

Head-pose classification

Our approach:

- Only estimate "yaw"
- Classification scheme.
- Discretize the range of yaw poses in steps of 15°.
- Estimate face orientation with a 13-class classifier.

→ Ξ → .

Head-pose classification based on a Random Forest

- Ensemble of trees.
- Prediction determined by combining the outputs of all trees.
- For each tree, the leaf node provides a discrete distribution of head-pose.

Head-pose estimation

・ 一 マ ト ・ 日 ト ・

Image channels patches

Image channels. We extract 38 channels I^α: gray-scale values, Sobel borders and 35 Gabor filters.

Head-pose estimation

Image channels patches

Image channels. We extract 38 channels I^α: gray-scale values, Sobel borders and 35 Gabor filters.

■ Image patches. Randomly choose a set of square patches P_i = {(I_i, h_i)}, where I_i is the patch appearance and h_i is the pose.

Head-pose estimation

Head-pose estimation

Patch-based channel features

• Our features $\theta = (R_1, R_2, \alpha)$ are the difference between two rectangles, R_1 and R_2 , within the patch in channel α .

$$f(oldsymbol{p}, heta) = rac{1}{|R_1|} \sum_{oldsymbol{q} \in R_1} \mathtt{I}^lpha(oldsymbol{q}) - rac{1}{|R_2|} \sum_{oldsymbol{q} \in R_2} \mathtt{I}^lpha(oldsymbol{q})$$

Head-pose estimation

・ 一 マ ト ・ 日 ト ・

Head-pose estimation

Training Regression Forest

- Train each decision tree using a randomly selected set of patches from a random subset of the training faces.
- Optimize each weak learner by selecting the $\theta = (R_1, R_2, \alpha)$, from a random pool of candidates $\phi = (\theta, \tau)$, that maximizes the information gain

$$IG(\phi) = \mathcal{H}(\mathcal{P}) - \sum_{S \in \{L,R\}} \frac{|\mathcal{P}_S(\phi)|}{|\mathcal{P}|} \mathcal{H}(\mathcal{P}_S(\phi)), \tag{1}$$

where

 τ is the threshold over the feature value,

$$\mathcal{P}_{L}(\phi) = \{\mathcal{P}|f(\mathcal{P},\theta) < \tau\},\ \mathcal{P}_{R}(\phi) = \mathcal{P} \setminus \mathcal{P}_{L}(\phi),\ \mathcal{H}(\mathcal{P}) = \log(\sigma\sqrt{2\pi e}).$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Head-pose estimation

Discrete pose estimation from face patches

Pose estimation algorithm

- 1 Detect face bounding box in I.
- **2** Resize bounding box to $W \times H$ pixels, denoted I_r .
- **3** Compute α channels from I_r .
- 4 Extract from I_r the set of input patches P of size N × N, with a stride of S pixels.
- **5** For each patch $p_i \in \mathcal{P}$:
 - **1** For each tree t_j in the forest:
 - **1** Input p_i to t_j .
 - 2 The leaf node of t_j reached by p_i provides a discrete distribution of the face orientation, p(yaw|p_i, t_j).
 - 2 Compute the patch face pose distribution, $p(yaw|p_i) = \sum_j p(yaw|p_i, t_j).$

6 Compute the final face pose distribution, $p(yaw|I_r) = \sum_i p(yaw|p_i)$.

< ロ > < 同 > < 回 > < 回 > .

Algorithm configuration

- Resize face bounding box to 105×125 pixels.
- Forest with T = 20 trees each trained on a random set of images equally distributed by yaw angle.
- Extract 20 random patches of 61×61 pixels from face bounding box.
- Growing stops when depth reaches 15, or if there are less than 20 patches in a leaf.
- Select the best parameters from a pool of $\phi = 50000$ samples obtained from $\theta = 2000$ different combinations of [α , R1, R2] and $\tau = 25$ thresholds.
- The maximum random size of the subpatches defining the asymmetric areas R1 and R2 is set to be lower than a 75% of the patch size.

イロト イボト イヨト イヨト

Filter out leaves with a maximum variance threshold set to 400.

Experiments

・ロト ・回 ト ・ ヨト ・ ヨト

э

Databases

Laboratory conditions evaluation

- Pointing-04.
- Evaluation "in-the-wild".
 - AFLW.
 - AFW.

Experiments

Qualitative results

Results for *Pointing-04* (top), *AFLW* (middle) and *AFW* (bottom) databases.

Green and blue lines indicate respectively estimated pose and ground truth.

イロト イポト イヨト イヨト

Experiments

Quantitative results in laboratory conditions

Our approach has a MAE close to the state-of-the-art.

Method	Pointing-04 MAE Accuracy (0°)		
Stiefelhagen ICPRW04	9.5°	52.0%	
Haj CVPR12	6.56°	67.36%	
Hara ECCV14	5.29°	-	
Geng CVPR14	4.24°	73.30%	
Our method	7.84 °	55.19%	

All three approaches with best results use holistic HOG-based face features.

In this constrained context, a global feature is more informative for estimating face pose than the set of local patches.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Experiments

Quantivative results in real-world conditions

Our approach achieves the best performance.

Mathad	AFLW		AFW	
Method	MAE	Acc (\leq 15 $^{\circ}$)	MAE	Acc (\leq 15 $^{\circ}$)
Haj CVPR12	-	-	-	78.7%
Zhu CVPR12	-	-	-	81.0%
Sundararajan CVPR15	17.48°	58.05%	17.20°	58.33%
Our method	12.26 °	72.57%	12.50 °	83.54%

Our approach can deal with challenging in-the-wild conditions, such as the presence of occlusions, illumination changes or facial expressions.

・ロット (雪) (き) (き)

Proposal Experiments Conclusions

Experiments

Results AFLW

Valle, Buenaposada, Valdés, Baumela

Head-pose estimation

< ロ > < 回 > < 回 > < 回 > < 回 >

э

Proposal Experiments Conclusions

Experiments

Results AFW

Valle, Buenaposada, Valdés, Baumela

Head-pose estimation

< ロ > < 回 > < 回 > < 回 > < 回 >

э

Conclusions

Conclusions

We have presented an algorithm to estimate head-pose yaw angle in unconstrained settings

- Performs behind the state-of-the-art in laboratory conditions and better using "in the wild" databases.
- Local features provide good results in realistic imaging conditions.
- Achieves 80 FPS (12ms per image). It outperforms its competitors in terms of computational requirements.

Future use for estimation of facial attributes.

- 4 同 ト 4 ヨ ト 4 ヨ ト